
 1

CAPITOLUL I

1. SUBPROGRAME

1.1. Prezentare generală

Să ne imaginăm că dorim să scriem un program în care să citim o mulţime de
numere întregi ale căror proprietăţi dorim sa le studiem şi eventual să efectuăm în
funcţie de proprietăţile lor diferite operaţii cu numerele citite.

De exemplu presupunem că dorim să ştim dacă numerele citite sunt prime sau
nu, dacă nu sunt prime dorim să le descompunem în factori primi, vrem să
verificăm dacă au proprietea de palindrom sau să le convertim în alte baze şi
altele.

Operaţiile pe care le-am înşirat mai sus sunt suficiente să ne dăm seama că
programul pe care urmează să-l scriem este lung, greu de scris de urmărit şi de
corectat în situaţia în care mai facem şi greşeli pe parcursul scrierii lui.

Ce este de făcut pentru a nu abandona înainte de a începe rezolvarea unei

probleme complexe?

Limbajul C++ ne pune la dispoziţie instrumentele necesare pentru a ne uşura

munca, pentru a nu fi nevoiţi să repetăm de multe ori aceleaşi secvenţe de
program, pentru a fi uşor de gândit, de realizat, de corectat şi de înţeles şi de
către o altă persoană decât cea care l-a scris.

Ne rămâne doar să mai învăţăm câte ceva despre subprograme.

Utilizarea subprogramelor ne permite accesul la ceea ce poate oferi

programarea structurată în C++.

Beneficiem astfel de următoarele avantaje:

 Putem reutiliza cu uşurinţă codul scris.

 Elaborarea algoritmilor devine mult mai uşoară datorită descompunerii

problemei în probleme mai simple, mai uşor de rezolvat.

 Corectarea erorilor se realizează cu mai mare uşurinţă.

 Descompunând problema şi rezolvând la un moment dat probleme mai
simple, reducem numărul erorilor la elaborarea algoritmilor.

În C++ subprogramele sunt de tip funcţie.

 2

Exemplu:
 Se citesc două numere întregi. Să se calculeze suma lor.

În exemplul de mai sus am definit funcţia suma, de tip întreg, cu parametrii a

şi b de tip întreg. După cum se poate observa funcţia returnează o valoare
întreagă, adică de acelaşi tip cu tipul funcţiei.

return c;
Funcţia se apeleză prin numele ei, are două argumente, x şi y de acelaşi tip

cu parametrii funcţiei.
La apelul funcţiei valoarea returnată de funcţie se depune în variabila z.
Este necesar să facem câteva precizări legate de variabile, înainte de a studia

mai amănunţit funcţiile.

1.2. Variabile globale şi variabile locale
Domeniul de vizibilitate, durata de viaţă şi zona de memorie alocată

Variabilele pot fi definite în orice poziţie într-un program, astfel putem defini

variabile înafara funcţiilor (chiar înafara funcţiei principale main), în acest caz
poartă numele de variabile globale, în interiorul unei funcţii caz în care le vom
numi variabile locale.

În realitate în C++ variabilele pot fi definite în orice punct al programului. Sigur

nu este indiferentă poziţia în care se defineşte o variabilă, de aceasta depinde
domeniul de vizibilitate al variabilei respective, adică zona de program din care
poate fi accesată variabila.

1. Variabilele globale, declarate la început de program (înaintea oricarei funcţii)
sunt accesibile din orice punct al programului.

#include <iostream.h> //SUMA

int suma(int a, int b); //antetul funcţiei

void main()

{int x,y,z;

 cout<<"x="; cin>>x;

 cout<<"y="; cin>>y;

 z=suma(x,y); //apelul funcţiei suma

 cout<<"suma="<<z;

 }

int suma(int a, int b) //funcţia suma de tip int, cu parametrii a şi b de tip int

{int c;

 c=a+b;

 return c;

}

Domeniul de vizibilitate al unei variabile începe în momentul declarării
ei şi sfârseşte în moentul în care se încheie structura în interiorul căreia a

fost definită.

 3

Dăcă există funcţii definite înaintea acestor variabile, pentru acele funcţii
variabilele nu sunt vizibile (nu pot fi accesate din interiorul acestor funcţii).

Durata de viaţă a unei variabile globale, este atâta timp cât programul se
execută.

Are alocat spaţiu de memorie pe tot parcursul execuţiei programului.
La declarare, variabilele globale se iniţializează în mod automat cu 0.

2. Variabilele locale definite în interiorul unei funcţii, sunt accesibile doar
funcţiei, nu pot fi utilizate înafara ei.
Durata de viaţă a unei variabile locale este pe tot parcursul execuţiei funcţiei

dacă a fost definită la începutul blocului de instrucţiuni.
Are alocată zonă de memorie numai pe parcursul execuţiei funcţiei respective.
Dacă o variabilă este definită în interiorul unui bloc de instrucţiuni, poate fi

accesată doar în interiorul acelui bloc, nu poate fi utilizată înafara lui.
Durata de viaţă a acestei variabile este până la terminrea execuţiei blocului în

care a fost definită.
Are alocată zonă de memorie numai pe parcursul executiei blocului respectiv.
Variabilele locale nu se iniţializează în mod automat. Dacă nu le iniţializează

programatorul, ele reţin o aşa numită valoare reziduală, adică ceea ce se gaseste
în memorie în acel moment.

#include <iostream.h>
 -variabilă globală accesibilă pe tot parcursul

 programului

void main()

{ - variabilă locală accesibilă doar în interiorul

 funcţiei main

 {

 -variabilă locală accesibilă doar în interiorul

 blocului în care a fost definită

 cout<<a<<b<<c;

 }

}

 float a;

 void main()

 {int c;

 {char d=’x’;

 cout<<d;

 }

 }

char b;

int c=5;

Observaţie:

În cazul în care într-un bloc sau într-o funcţie sunt vizibile mai multe

variabile cu acelaşi nume, dar cu domenii de vizibilitate diferite, se
accesează variabila cu domeniul cel mai mic de vizibilitate.

 4

Exemplu:
 În programul de mai jos sunt definite două variabile cu numele a. O variabilă
globală şi o variabila locală definită în cadrul funcţiei f.
 În timpul execuţiei, functia f accesează variabila locală.

În ceea ce priveşte zona de memorare a variabilelor, putem spune că şi din

acest punct de vedere sunt diferenţe între variabilele globale şi cele locale.
Sistemul de operare alocă fiecărui program trei zone distincte de memorie

internă, pentru memorarea variabilelor programului.
Există şi posibilitatea ca o variabilă să fie memorată într-un registru al

microprocesorului. Timpul de acces la variabilele memorate în regiştrii este foarte mic
şi astfel poate fi îmbunatăţit timpul de execuţie al programului.

Zonele de memorie internă alocte:

Segmentul de date

-Variabile globale

Segmentul de stiva

-Variabile locale

Heap

-Date alocate dinamic

1. Variabilele globale se memorează în cadrul segmentului de date.
2. Variabilele locale se memorează pe segmentul de stivă pus la dispoziţia

funcţiei în interiorul careia sunt definite.
3. Datele alocate dinamic nu constitue obiectul acestui manual.

#include <iostream.h>

int a; //a este variabilă globală

int f() //funcţia suma de tip int, cu parametrii a şi b de tip int

{int a=5; //funcţia foloseste variabila locala a(definita in funcţie), nu pe cea globală

 a++;

 return a;

}

void main()

{

 a=f(); //apelul funcţiei suma

 cout<<"a="<<a;

}

Rezultatul rularii programului:

a=6

 5

1.3. Structura funcţiilor şi apelul lor

O funcţie se compune din antet şi corpul funcţiei.
 Antetul unei funcţii cuprinde tipul de dată returnat de funcţie, numele

funcţiei şi lista parametrilor.
 Corpul funcţiei este format din una sau mai multe instrucţiuni cuprinse

între acolade.

 1.3.1. Formatul unei funcţii:

tip nume(parametru1, parametru2, …) { instrucţiuni }

 tip – reprezintă un tip de dată şi desemnează tipul datei returnate de funcţie
(nu este obligatoriu).

 nume – este un identificator prin intermediul căruia se apelează funcţia.
 parametrii – permit transmiterea argumentelor către funcţie atunci când este

apelată. Fiecare parametru constă dintr-un tip de dată urmat de un
identificator, ca orice variabilă şi acţionează ca o variabilă locală.

 Instrucţiuni – reprezintă corpul funcţiei şi trebuie să fie cuprins între acolade
{…} .

1.3.2. Declararea şi definirea unei funcţii

 A declara o funcţie înseamnă a o “anunţa”, adică a face cunoscut
programului că această funcţie există şi caracteristicile ei, adică tipul, numele şi lista
eventualilor parametrii. Declararea unei funcţii se face cu ajutorul antetului funcţiei.

 tip nume(parametru1, parametru2, …);

 A defini o funcţie înseamnă a o descrie înpreună cu corpul funcţiei.

tip nume(parametru1, parametru2, …) { instrucţiuni }

definiţia unei funcţii ţine loc si de declaraţie în cazul în care funcţia este plasată
înaintea funcţiei principale main().

1.3.3. Structura unui program care conţine subprograme

 Un program poate să conţină oricâte funcţii.

 Aşa cum o variabilă nu poate fi accesată în limbajul de programare C înainte
de a fi definită, nici o funcţie nu poate fi apelată fără ca programul să ştie
caracteristicile acelei functii. Pentru a putea fi apeltă funcţia trebuie să fie cel putin
declarată.

 6

 Există două modalităţi de a plasa funcţiile într-un program:

a. Înaintea funcţiei principale main(), ca în exemplul de mai jos:

b. După funcţia principală main(), caz în care funcţia trebuie declarată înainte,

1.3.4. Apelul unei funcţii

 O funcţie poate fi apelată din funcţia principală main, dintr-o altă funţie sau
chiar din funcţia însăşi. Acest din urmă caz îl vom trata într-un capitol separat.
 După cum am spus în paragraful 1.3.1, antetul unei funcţii poate conţine tipul
datei returnate de funcţie sau nu. Aceasta datorită faptului că o funcţie poate să
returneze o valoare sau nu.

 Din acest punct de vedere putem împarţi funcţiile în două categorii:

1. Funcţii care returnează o valoare, definite astfel:

 tip nume(parametru1, parametru2, …) { instrucţiuni }

 O funcţie care returnează o valoare trebuie să conţină linia de cod:

 return expresie;

 Rezultatul returnat de funcţie poate fi utilizat într-o expresie sau poate fi afişat.

#include <iostream.h>

int f()

{int a=3;

 return a;

}

void main()

{cout<<f;

}

#include <iostream.h>

int f(); //declararea funcţiei f

void main()

{cout<<f;

}

int f() //definirea funcţiei f

{int a=3;

 return a;

}

 7

Prin urmare apelul unei funcţii care returnează o valoare poate fi de forma:
 variabila=nume(parametrul1,parametrul2,…);
sau
 cout<<nume(listă parametrii);

Exemplu:
 Să se însumeze primele n numere naturale.

2. Funcţiile care nu returnează o valoare, în loc de tip vor conţine cuvântul
void

void nume(parametru1, parametru2, …) { instrucţiuni }

Apelul unei astfel de funcţii:
 nume(parametrul1,parametrul2,…);

#include <iostream.h>

#include <conio.h>

int n; //declararea variabilei globale

int suma(); //declararea functiei – funcţia nu are parametrii

void main()

{cout<<"n="; cin>>n;

 cout<<"suma primelor n numere naturale:"<<suma(); //apelul funcţiei

 getch();

}

int suma() //definirea functiei

{int i,s=0;

 for(i=1;i<=n;i++)

 s+=i;

 return s; //valoarea returnata de funcţie

}

#include <iostream.h> //AFISARE

int n;

int afisare(); //declararea functiei – funcţia nu are parametrii

void main()

{cout<<"n="; cin>>n;

 afisare(); //apelul funcţiei

}

int afisare() //definirea funcţiei

{int i,s=0;

 for(i=1;i<=n;i++)

 cout<<i<<" ";

}

 8

1.3.5. Modul de funcţionare al unui program care conţine una sau mai multe
funcţii

 În momentul în care se apelează o funcţie controlul programului se va da
funcţiei respective pentru a fi executată.

 În momentul apelării unei funcţii se întplă mai următoarele:

 Se alocă spaţiu pe segmentul de stivă unde se memorează parametrii
funcţiei (acă funcţia are parametrii).

 Se salvează adresa instrucţiunii următoare apelului, pentru ca la revenirea
din funcţie programul să continue cu instrucţiunea următoare.

 Salt la prima instrucţiune a funcţiei
 Se alocă spaţiu pe segmentul de stivă unde se memorează variabilele

locale (dacă au fost declarate variabile locale).
 Se execută în segvenţă instrucţiunile funcţiei apelate.
 Se eliberează segmentul de stivă alocat funcţiei.
 Se revine în punctul în care s-a apelat funcţia şi programul continuă cu

instrucţiunea următoare

Observaţie:
 O funcţie poate să nu conţină parametrii.

În acest caz atât la declarare cât şi la definire şi apel numele funcţiei va fi
urmat de paranteze rotunde, dar fără să conţină nici un parametru.
 Parantezele sunt obligatorii pentru a informa compilatorul că este vorba
despre o funcţie şi nu de o variabilă.

Program





 Apel functie f(…)

 Instructiunea

urmatoare apelului











Funcţia

f(…)

Segment de

date

Segment de

stiva

 9

1.3.6. Transmiterea parametrilor

 Parametrii unei funcţii au rolul de a transmite date funcţiei şi/sau de a
transmite date din funcţie spre zona de program care a apelat funcţia. Parametrii se
descriu prin tipul şi numele lor, în antetul funcţiei, despărţiţi între ei prin virgulă.

 Parametrii care se află în antetul funcţiei se numesc parametri formali iar cei
care se află în instrucţiunea de apel a funcţiei se numesc parametri efectivi.

 Numele (identificatorii) parametrilor formali poate să fie diferit de numele
parametrilor efectivi sau poate să coincidă.
 Transmiterea parametrilor se face prin corespondenţă, din acest motiv
între parametrii formali şi cei efectivi trebuie să existe o anumită concordanţă:

 Numărul parametrilor formali trebuie să coincidă cu numărul parametrilor
reali. Există o singură excepţie şi anume parametrii cu valoare implicită,
despre care vom vorbi mai târziu.

 Ordinea parametrilor formali trebuie să fie aceeaşi cu cea a parametrilor
efectivi, deoarece după cum am spus transmiterea parametrilor se face prin
corespondenţă.

 Tipul parametrilor efectivi trebuie să poată fi convertit implicit în tipul
parametrilor formali sau să coincidă.

Exemplu:

 Parametrii se memorează pe segmentul de stivă pus la dispoziţia funcţiei în
momentul apelării ei. Aceştia se memorează în ordinea în care au fost trecuţi
în antetul funcţiei.

 Parametrii transmişi şi memoraţi pe segmentul de stivă sunt variabile locale,
iar numele lor este cel din lista de parametrii formali.

Din punctul de vedere al modului de transmitere a parametrilor putem împărţi

parametrii în două categorii: parametrii transmişi prin valoare şi parametrii
transmişi prin referinţă.

1. Parametrii transmişi prin valoare
Parametrii transmişi prin valoare au rolul de a transmite date din zona de program

în care s-a apelat funcţia înspre funcţie.
Funcţia va memora aceste date pe segmentul de stivă pus la dispoziţie. După

terminarea execuţiei funcţiei, segmentul de stivă se eliberează şi astfel programul nu
mai are acces la variabilele memorate pe stivă. Din acest motiv parametrii transmişi
prin valoare nu pot transmite datele modificate în cadrul funcţiei înspre zona de
program de unde a fost apelată funcţia.

Prin valoare se pot transmite: variabile, expresii şi chiar funcţii.

int suma (int a, float b)

x=suma(2, 3.14);

 10

Exemplu:

Observaţi că în urma apelării funcţiei f(), deşi în interiorul funcţiei variabilele a
şi b şi-au modificat valorile, noile valori nu s-au transmis variabilelor x şi y,
acestea rămân nemodificate.

Acest lucru se întâmplă datorită faptului că pe segmentul de stivă s-a
creat o copie a variabilelor x şi y cu numele a şi b, iar funcţia operează
asupra acestora.

La terminarea execuţiei funcţiei, se eliberează segmentul de stivă iar
valorile variabilelor a şi b se pierd.

 La declararea unei funcţii putem specifica o valoare implicită pentru unii
parametrii.

#include <iostream.h> //PARAMETRII TRANSMISI PRIN VALOARE

 //parametrii transmisi prin valoare

void f(int a,int b);

void main()

{ int x=2,y=3;

 f(x,y); //parametrii efectivi sunt variabile

 cout<<"x="<<x<<" y="<<y<<endl; //la revenire x si y sunt nemodificati

 f(2*x,2*y); //parametrii efectivi sunt expresii

 cout<<"x="<<x<<" y="<<y; //la revenire x si y sunt nemodificati

}

void f(int a,int b) //functia modifica valorile parametrilor, dar nu le transmite inafara

{a=a+2;

 b=a+3;

 cout<<"a="<<a<<" b="<<b<<endl;

}

Rezultatul rulării programului:

a=4 b=7

x=2 y=3

a=6 b=9

x=2 y=3

 Inainte si dupa apelul functiei f()- la primul apel f()-la al doilea apel

Segment de date

x

y
2

3

Segment de stiva

a

b

dispar după

terminarea execuţiei

2 4

3 7

Segment de stiva

a

b

dispar după

terminarea execuţiei

2 6

3 9

 11

În cazul în care nu există parametrii efectivi corespunzători, vor fi folosite de
către funcţie valorile implicite.

În cazul în care se transmit parametrii efectivi, se vor folosii valorile acestora.

Priviţi exemplul de mai jos:

În exemplul de mai sus antetul funcţiei conţine doi parametri cu valori implicite b=1 şi
c=2.
 La apelul afisare(3,4,5); s-au transmis toţi cei 3 parametrii iar funcţia a folosit
valorile transmise.

La apelul afisare(5,6); s-au transmis 2 parametrii iar funcţia a folosit valorile
transmise pentru a şi b şi valoarea implicită pentru c.

La apelul afisare(7); s-a transmis doar valoarea parametrului a iar pentru b şi c
s-au folosit valorile implicite.

2. Parametrii transmişi prin referinţă

De multe ori este necesar să modificăm în interiorul unei funcţii valorile unei

variabile externe funcţiei. În acest scop se folosesc parametrii transmişi prin referinţă.
Prin urmare rolul parametrilor transmişi prin referinţă este ca la revenirea

din funcţie, variabila transmisă, să reţină valoarea modificată în timpul
execuţiei funcţieie.

Pentru ca un parametru să fie transmis prin referinţă numele lui trebuie să fie

precedat de caracterul ampersand &, la declararea parametrilor, în antetul funcţiei.

Caracterul ampersand specifică faptul că parametrul este transmis prin
referinţă şi nu prin valoare.

#include <iostream.h>

void afisare(int a,int b=1,int c=2); //b si c sunt parametrii cu valori implicite

void main()

{//am specificat valori pentru toti parametrii, functia le va utiliza pe cele specificate ca

//parametrii efectivi

 afisare(3,4,5);

//am specificat valori doar pentru a si b, pentru c se va folosi valoarea implicita

 afisare(5,6);

//am specificat valori doar pentru a , pentru b si c se vor folosi valoarile implicite

 afisare(7);

}

void afisare(int a,int b,int c) //nu se specifică de două ori valoarea implicită

{cout<<"a="<<a<<" b="<<b<<" c="<<c<<endl;

}

 12

Exemplu:

int f(int &a, int &b);

 f (x , y);

Atunci când o variabilă este transmisă prin referinţă, nu se face o copie a ei pe

segmentul de stivă ci se reţine pe segmentul de stivă adresa variabilei însăşi. Cu
alte cuvinte modificările se efectuează la adresa reţinută, prin urmare chiar asupra
variabilei transmise.

O funcţie poate avea unul sau mai mulţi parametrii transmişi prin
referinţă.

Parametrii efectivi corespunzători parametrilor transmişi prin referinţă
trebuie să fie nume de variabile.

Să analizăm următorul exemplu:

 Parametrul a este transmis prin referinţă iar parametrul b este transmis
prin valoare.
 Iniţial x=1 şi y=2, în cadrul funcţiei a devine 2 iar b devine 4.

Deoarece a este un parametru transmis prin referinţă valoarea lui este
transmisă în x. Întrucât b este parametru transmis prin valoare, y nu preia valoarea
modificată a lui b

#include <iostream.h> //PARAMETRII TRANSMISI PRIN REFERINTA

void f(int &a,int b); //parametrul a este transmis prin referinta

 //parametrul b este transmis prin valoare
void main()

{ int x=1,y=2;

 cout<<"x="<<x<<" y="<<y<<endl; //x si y inainte de apelatrea functiei

 f(x,y);

 cout<<"x="<<x<<" y="<<y<<endl; //x si y dupa apelatrea functiei

}

void f(int &a,int b)

{a=2*a; //modificarea valorilor prametrilor a si b

 b=2*b;

 cout<<"a="<<a<<" b="<<b<<endl; // a si b in functie

}

Rezultatul rulării:

x=1 y=2

a=2 b=4

a=2 b=2

 13

1.4. Probleme rezolvate

1. Se citeşte o literă şi un număr întreg n. Să se calculeze:
-pentru litera a S1=12 + 32 + 52 + ... + (2n-1) 2
-pentru litera b S2=1 + 1*2+1*2*3 + ... +1*2*3...n

Inainte si dupa apelul functiei f()- după apel

Segmentul de date

 x

 y

Segmentul de stiva

 a adresa lui x

 b
1 2

2
2 4

#include <iostream.h> //SUME

#include <math.h> //conţine funcţiile matematice

long s1(int n);

long s2(int n);

void main()

{ int n; char lit; //n-nr. elemente, lit-litera citita

 cout<<"n="; cin>>n;

 cout<<"lit(a sau b)="; cin>>lit;

 if(lit=='a')

 cout<<"S1="<<s1(n);

 else

 cout<<"s2="<<s2(n);

}

long s1(int n) //funcţia s1 are un parametru transmis prin valoare

{int i; long s=0;

 for(i=1;i<=n;i++)

 s+=pow(2*i-1,2);

 return s; //funcţia s1 returneaza valoarea calculată

}

long s2(int n) //funcţia s2 are un parametru transmis prin valoare

{int i;

 long s=0,p=1;

 for(i=1;i<=n;i++)

 {p*=i;

 s+=p; }

 return s; //funcţia s2 returnează valoarea calculată

}

 14

2. Se citeşte un număr natural n. Să se numere câte cifre pare şi câte cifre
impare are numărul.

Vom realiza o funcţie cifre pentru numărarea cifrelor pare şi impare, căreia îi
transmitem 3 parametrii.
n – numărul citit, parametru transmis prin valoare
c_pare-numărul cifrelor pare, parametru transmis prin referinţă, care va
transmite numarul cifrelor pare ale numarului, din funcţie înspre programul
apelant.
c_impare-numărul cifrelor impare, parametru transmis prin referinţă, care
va transmite numarul cifrelor impare ale numărului, din funcţie înspre
programul apelant.
Funcţia cifre va returna programului principal numărul cifrelor pare şi numărul
cifrelor impare, prin intermediul parametrilor transmişi prin referinţă.

3. Se citeşte un număr natural n. Să se verifice şi să se afişeze dacă este un
număr prim, altfel să se afişeze descompunerea în factori primi.

Definim o funcţie prim, care primeşte ca parametru transmis prin valoare

numărul n şi returnează 1 dacă numarul este prim şi 0 dacă numarul nu este prim.
Definim de asemenea o funcţie factori, funcţie fără tip, care primeşte ca

parametru numărul n şi afişează factorii primi şi ordinul lor de multiplicitate.

#include <iostream.h> //NR. CIFRE PARE SI IMPARE

void cifre(int n, int &x, int &y); //declararea functiei cifre

void main()

{long n;

 int c_pare=0,c_impare=0; //c_pare-nr. cifrelor pare,c_impare-nr. Cifrelor impare

 cout<<"n="; cin>>n;

 cifre(n,c_pare,c_impare);

 cout<<"nr. cifre pare="<<c_pare<<endl;

 cout<<"nr. cifre impare="<<c_impare<<endl;

}

void cifre(int n, int &x, int &y) //definirea functiei cifre

{ while (n) //cat timp numarul mai are cifre

 {if ((n%10)%2==0) //verifica daca ultima cifra a numarului este para

 x++; //incrementează numărul cifrelor pare

 else

 y++; //incrementeaza numarul cifrelor impare

 n/=10; //elimina ultima cifra

 }

}

 15

4. Se citeşte un număr natural n. Să se descompună în sumă de numere fibonacci.

Definim funcţia max_f, care determină cel mai mare număr fibonacci mai mic
sau egal cu un număr dat. Funcţia primeşte ca parametru transmis prin valoare
numarul dat.

Definim funcţia fibo, care apelează funcţia max_f şi astfel determină max, cel
mai mare număr fibonacci mai mic sau egal cu numărul dat, apoi scade din numărul
dat, numarul max.

Se reia algoritmul atâta timp cât numărul dat este diferit de zero.

#include <iostream.h> //PRIM si FACTORI PRIMI

int prim(int n); //declararea funcţiei prim, n parametru transmis prin valoare

void factori(int n); //declararea funcţiei factori, n parametru transmis prin valoare

void main()

{long n;

 cout<<"n="; cin>>n;

 if(prim(n)) //apelul funcţiei prim ca expresie logică

 cout<<n<<" este numar prim";

 else

 {cout<<"descompunerea in factori primi: ";

 factori(n); //apelul funcţiei factori

 }

}

int prim(int n) //definirea functiei prim

{int i;

 if (n==0 || n==0)

 return 0;

 for(i=2;i<=n/2;i++)

 if(n%i==0)

 return 0;

 return 1;

}

void factori(int n) //definirea functiei factori

{int i=2,k;

 while (n!=1)

 {k=0;

 while(n%i==0)

 {k++;

 n/=i;

 }

 if (k)

 cout<<i<<"^"<<k<<" ";

 i++;

 }

}

 16

5. Se citeşte un număr natural n în baza 10 şi b un număr natural 2<=b<=9
reprezentând o bază de numeraţie. Să se transforme numărul n în baza b.

 Vom scrie o funcţie conv, de tip void, cu doi parametrii transmişi prin valoare,
respectiv n şi b.
 Rezultatul conversiei îl vom memora într-un tablou unidimensional t.

În finalul funcţiei afişăm conţinutul tabloului în ordinea inversă construirii lui.

//DESCOMPUNEREA UNUI NUMAR IN SUMA DE NUMERE FIBONACCI

#include <iostream.h>

void fibo(unsigned long m); // declararea funcţiei fibo

unsigned long max_f(unsigned long nr); //declararea functiai max_f

void main()

{unsigned long n;

 clrscr();

 cout<<"n=";cin>>n;

 cout<<n<<" = ";

 fibo(n); //apelul funcţiei fibo

}

unsigned long max_f(unsigned long nr) //definirea functiei max_f

{unsigned long a,b,c;

 a=0;b=1;

 while(b<=nr)

 {c=a+b;

 a=b;

 b=c;

 }

 return a; //valoarea returnată de functia max_f

}

void fibo(unsigned long m) //definirea functiei fibo

{int max;

 while (m)

 {max=max_f(m); //apelul functiei max_f din interiorul functiei fibo

 cout<<"+"<<max;

 m-=max;

 }

}

 17

6. Se citeşte un număr natural n şi apoi n cifre reprezentând un număr în baza b,
1<=b<=9. Să se transforme numărul dat din baza b în baza 10.

 Vom realiza două funcţii. Funcţia citire, pentru citirea numărului în baza b şi a
bazei. Funcţia va avea 3 parametrii:

 n, numărul de cifre, parametru transmis prin referinţă
 t- tablou unidimensional care va conţine cifrele numărului, acest parametru se

transmite prin valoare deşi rezultatul citirii trebuie transmis şi celorlalte funcţii.
Întrucât numele unui tablou este adresa primului octet din tablou. Fiind
adresă, modificările se realizează în funcţie chiar asupra tabloului la adresa la
care este memorat tabloul în segmentul de date.

 b-baza de numeraţie, parametru transmis prin referinţă

Funcţia conv, converteşte numărul din baza b în baza 10. Returnează numărul în
baza 10. Funcţia are trei parametrii transmişi prin valoare: n, t, b, cu semnificaţia de
mai sus.

 //CONV 10->b

#define MAX 20

void conv(int n, int b); //antetul funcţiei

void main()

{int n,b;

 cout<<"n="; cin>>n; //numărul în baza 10

 cout<<"b="; cin>>b; //baza de numeraţie

 conv(n,b); //apelul funcţiei de conversie

}

void conv(int n, int b) //definirea funcţiei conv

{int i=0,j,t[MAX];

 while (n)

 {t[i++]=n%b; //restul împărţirii lui n la b se depune în tabloul t

 n=n/b; //n devine câtul împărţirii lui n la b

 }

 for(j=i-1;j>=0;j--) //afisarea numărului în baza b

 cout<<t[j];

}

 18

#include <iostream.h> //CONV b->10

#include <math.h>

#define MAX 20

void citire(int &n, int t[MAX], int &b);

int conv(int n, int t[MAX], int b);

void main()

{int n,b,t[MAX],nr; //n-nr.de cifre,b-baza,t-conţine numarul in baxa b

 citire(n,t,b); //apelul funcţiei citire

 nr=conv(n,t,b); //apelul funcţiei conv

 cout<<"nr. in baza 10= "<<nr;

}

void citire(int &n, int t[MAX], int &b) //citeste datele de intrare

{int i;

 cout<<"baza=";cin>>b;

 cout<<"n=";cin>>n;

 cout<<"introduceti "<<n<<" cifre in baza "<<b<<":"<<endl;

 for(i=n-1;i>=0;i--)

 {cin>>t[i];}

}

int conv(int n,int t[MAX],int b) //converteste numarul in baza 10

{int i,nr=0;

 for(i=n-1;i>=0;i--)

 nr+=t[i]*pow(b,i);

 return nr;

}

 19

1.6. Probleme propuse

1. Să se afişeze numerele naturale mai mari decât 100 şi mai mici decât 500
care au toate cifrele distincte utilizând o funcţie care primeşte ca parametru un
număr şi returnează 1 dacă are toate cifrele distincte şi 0 dacă nu sunt
distincte.

2. Se citesc n numere. Să se afişeze numerele obţinute prin inversarea cifrelor.

3. Să se afişeze toate numerele până la 1000 al căror pătrat se termină cu cifra

n.

4. Se citesc numere naturale până la întâlnirea lui 0. Să se afişeze inversele
numerelor citite, pentru care media aritmetică a cifrelor este strict mai mică
decât 5.

5. Se citesc n numere naturale. Să se calculeze suma numerelor care au toate

cifrele pare. Dacă nu există nici un astfel de număr se va afişa un mesaj.

6. Calculaţi suma şi produsul divizorilor proprii ai unui număr citit.

7. Fiind dat un număr natural n, să se afişeze toţi divizorii săi şi media aritmetică
a divizorilor săi cuprinşi între două valori citite a şi b sau un mesaj, dacă nu
are divizori între aceste valori.

8. Fiind dat un număr natural n, afişaţi divizorii săi şi număraţi câţi dintre aceştia

sunt numere prime.

9. Să se genereze toate numerele prime mai mici sau egale cu un număr n citit
de la tastatură.

10. Scrieţi un program care calculează suma a două fracţii ordinale. Afişarea se

va face după simplificarea fracţiilor.

11. Se citeşte un număr natural n. Să se stabilească dacă acesta este un termen
al şirului lui Fibonacci.

12. Se citeşte un număr natural n diferit de 0. Să se scrie toate tripletele de

numere pitagoreice (a2+b2=c2), mai mici decât n, nenule.

13. Se citeşte un număr natural n, în baza 10. Să se transforme numărul în baza
16.

14. Se citesc n caractere reprezentând un număr în baza 16. Să se transforme în

baza 10.

