CAPITOLUL |

1. SUBPROGRAME

1.1. Prezentare generala

Sa ne imaginam ca dorim sa scriem un program in care sa citim o multime de
numere intregi ale caror proprietati dorim sa le studiem si eventual sa efectuam in
functie de proprietatile lor diferite operatii cu numerele citite.

De exemplu presupunem ca dorim sa stim daca numerele citite sunt prime sau
nu, daca nu sunt prime dorim sa le descompunem in factori primi, vrem sa
verificdam daca au proprietea de palindrom sau sa le convertim in alte baze si
altele.

Operatiile pe care le-am insirat mai sus sunt suficiente sa ne dam seama ca
programul pe care urmeaza sa-l scriem este lung, greu de scris de urmarit si de
corectat in situatia in care mai facem si greseli pe parcursul scrierii lui.

Ce este de facut pentru a nu abandona inainte de a incepe rezolvarea unei
probleme complexe?

Limbajul C++ ne pune la dispozitie instrumentele necesare pentru a ne usura
munca, pentru a nu fi nevoiti sa repetam de multe ori aceleasi secvente de
program, pentru a fi usor de gandit, de realizat, de corectat si de inteles si de
catre o alta persoana decat cea care |-a scris.

Ne ramane doar sa mai invatam cate ceva despre subprograme.

Utilizarea subprogramelor ne permite accesul la ceea ce poate oferi
programarea structurata in C++.

Beneficiem astfel de urmatoarele avantaje:
» Putem reutiliza cu usurinta codul scris.

> Elaborarea algoritmilor devine mult mai usoara datorita descompunerii
problemei in probleme mai simple, mai usor de rezolvat.

» Corectarea erorilor se realizeaza cu mai mare usurinta.

» Descompunand problema si rezolvand la un moment dat probleme mai
simple, reducem numarul erorilor la elaborarea algoritmilor.

in C++ subprogramele sunt de tip functie.

Exemplu:
Se citesc doua numere intregi. Sa se calculeze suma lor.

#include <iostream.h> [ISUMA

int suma(int a, int b); //antetul functiei
void main()

{int x,y,z;

cout<<"x="; cin>>Xx;

cout<<"y="; cin>>y;,

z=suma(x,y); //apelul functiei suma

cout<<"suma="<<z;

}

int suma(int a, int b) //functia suma de tip int, cu parametrii a si b de tip int
{intc;

c=a+tb;

return c;

}

in exemplul de mai sus am definit functia suma, de tip intreg, cu parametrii a
si b de tip intreg. Dupa cum se poate observa functia returneaza o valoare
intreaga, adica de acelasi tip cu tipul functiei.

return c;

Functia se apeleza prin numele ei, are doua argumente, x si y de acelasi tip
cu parametrii functiei.

La apelul functiei valoarea returnata de functie se depune in variabila z.

Este necesar sa facem cateva precizari legate de variabile, inainte de a studia
mai amanuntit functiile.

1.2. Variabile globale si variabile locale
Domeniul de vizibilitate, durata de viata si zona de memorie alocata

Variabilele pot fi definite in orice pozitie intr-un program, astfel putem defini
variabile Tnafara funcfiilor (chiar inafara functiei principale main), in acest caz
poartd numele de variabile globale, in interiorul unei functii caz in care le vom
numi variabile locale.

in realitate in C++ variabilele pot fi definite in orice punct al programului. Sigur
nu este indiferenta pozitia in care se defineste o variabila, de aceasta depinde
domeniul de vizibilitate al variabilei respective, adica zona de program din care
poate fi accesata variabila.

Domeniul de vizibilitate al unei variabile incepe in momentul declararii
ei si sfarseste in moentul in care se incheie structura in interiorul careia a
fost definita.

I. Variabilele globale, declarate Ta inceput de program (inaintea oricarei funcfii)
sunt accesibile din orice punct al programului.

Daca exista functii definite inaintea acestor variabile, pentru acele funciii
variabilele nu sunt vizibile (nu pot fi accesate din interiorul acestor funcitii).

Durata de viata a unei variabile globale, este atata timp céat programul se
executa.

Are alocat spatiu de memorie pe tot parcursul executiei programului.

La declarare, variabilele globale se initializeaza in mod automat cu 0.

2. Variabilele locale definite in interiorul unei functii, sunt accesibile doar

functiei, nu pot fi utilizate inafara ei.

Durata de viata a unei variabile locale este pe tot parcursul executiei functiei
daca a fost definita la inceputul blocului de instructiuni.

Are alocata zona de memorie numai pe parcursul executiei functiei respective.

Daca o variabila este definita in interiorul unui bloc de instructiuni, poate fi
accesata doar in interiorul acelui bloc, nu poate fi utilizata inafara lui.

Durata de viata a acestei variabile este pana la terminrea executiei blocului in
care a fost definita.

Are alocata zona de memorie numai pe parcursul executiei blocului respectiv.

Variabilele locale nu se initializeaza in mod automat. Daca nu le initializeaza
programatorul, ele retin o asa numita valoare reziduala, adica ceea ce se gaseste
in memorie in acel moment.

#include <iostream.h>

float a- -variabila globala accesibila pe tot parcursul
oata, programului
void main()
{ - variabila locala accesibila doar in interiorul
char b; functiei main
{
_-Variabili locala accesibila doar in interiorul
blocului in care a fost definita
cout<<a<<b<<c;
}
}
Observatie:

in cazul in care intr-un bloc sau intr-o functie sunt vizibile mai muite
variabile cu acelasi nume, dar cu domenii de vizibilitate diferite, se
acceseaza variabila cu domeniul cel mai mic de vizibilitate.

Exemplu:
In programul d

e mai jos sunt definite doua variabile cu numele a. O variabila

globala si o variabila locala definita in cadrul funcitiei f.
In timpul executiei, functia f acceseaza variabila locala.

int f() //functi
{inta=5; //functia
a++;

return a;

¥

void main()

{
a=f();
cout<<"a="<<a;

¥

#include <iostream.h>
inta; //a este variabila globala

a suma de tip int, cu parametrii a §i b de tip int
foloseste variabila locala a(definita in functie), nu pe cea globala

Rezultatul rularii programului:

a=6

//apelul functiei suma

in ceea ce priveste zona de memorare a variabilelor, putem spune ca si din
acest punct de vedere sunt diferente intre variabilele globale si cele locale.
Sistemul de operare aloca fiecarui program trei zone distincte de memorie

interna, pentru memo
Exista si posi

rarea variabilelor programului.
bilitatea ca o variabila sa fie memorata intr-un registru al

microprocesorului. Timpul de acces la variabilele memorate in registrii este foarte mic
si astfel poate fi imbunatatit timpul de executie al programului.
Zonele de memorie interna alocte:

Segmentul de date

-Variabile globale

Segmentul de stiva

-Variabile locale

Heap

-Date alocate dinamic

=

Variabilele globale se memoreaza in cadrul segmentului de date.

2. Variabilele locale se memoreaza pe segmentul de stiva pus la dispozitia
functiei In interiorul careia sunt definite.

3. Datele alocate

dinamic nu constitue obiectul acestui manual.

1.3. Structura funcitiilor si apelul lor

O functie se compune din antet si corpul functiei.
» Antetul unei functii cuprinde tipul de data returnat de functie, numele
functiei si lista parametrilor.
» Corpul functiei este format din una sau mai multe instructiuni cuprinse
intre acolade.

1.3.1. Formatul unei functii:
tip nume(parametrul, parametru?2, ...) { instructiuni }

> tip — reprezinta un tip de data si desemneaza tipul datei returnate de functie
(nu este obligatoriu).

» nume — este un identificator prin intermediul caruia se apeleaza functia.

» parametrii — permit transmiterea argumentelor catre functie atunci cand este
apelata. Fiecare parametru consta dintr-un tip de data urmat de un
identificator, ca orice variabila si actioneaza ca o variabila locala.

> Instructiuni — reprezinta corpul functiei si trebuie sa fie cuprins intre acolade

{...}.

1.3.2. Declararea si definirea unei funciii
A declara o functie inseamna a o “anunta”, adica a face cunoscut
programului ca aceasta functie exista si caracteristicile ei, adica tipul, numele si lista
eventualilor parametrii. Declararea unei funcitii se face cu ajutorul antetului functiei.

tip nume(parametru1, parametru2, ...);
A defini o functie inseamna a o descrie inpreuna cu corpul functiei.
tip nume(parametru1, parametru2, ...) { instructiuni }

definitia unei funciii {ine loc si de declaratie in cazul in care functia este plasata
inaintea functiei principale main().

1.3.3. Structura unui program care contine subprograme

Un program poate sa contina oricate funciii.

Asa cum o variabila nu poate fi accesata in limbajul de programare C inainte
de a fi definita, nici o functie nu poate fi apelata fara ca programul sa stie
caracteristicile acelei functii. Pentru a putea fi apelta functia trebuie sa fie cel putin
declarata.

Exista doua modalitati de a plasa funcitiile intr-un program:

a. Inaintea functiei principale main(), ca in exemplul de mai jos:

#include <iostream.h>
int f()

{int a=3;

return a;

¥

void main()
{cout<<f;

}

b. Dupa functia principala main(), caz in care functia trebuie declarata inainte,

#include <iostream.h>
int f(); //declararea functiei f

void main()
{cout<<f;
}
int f() //definirea functiei f
{int a=3;
return a;

}

1.3.4. Apelul unei functii

O functie poate fi apelata din functia principala main, dintr-o alta funtie sau
chiar din functia insasi. Acest din urma caz il vom trata intr-un capitol separat.

Dupa cum am spus in paragraful 1.3.1, antetul unei funciii poate contine tipul
datei returnate de functie sau nu. Aceasta datorita faptului ca o functie poate sa
returneze o valoare sau nu.

Din acest punct de vedere putem imparti functiile in doua categorii:

1. Functii care returneaza o valoare, definite astfel:

tip nume(parametru1, parametru2, ...) { instructiuni }

O functie care returneaza o valoare trebuie sa contina linia de cod:

return expresie;

Rezultatul returnat de functie poate fi utilizat intr-o expresie sau poate fi afigat.

Prin urmare apelul unei functji care returneaza o valoare poate fi de forma:
variabila=nume(parametrul1,parametrul2,...);

sau
cout<<nume(lista parametrii);

Exemplu:
Sa se insumeze primele n numere naturale.

2. Functiile care nu returneaza o valoare, in loc de tip vor contine cuvantul
void

void nume(parametru1, parametru2, ...) { instructiuni }
Apelul unei astfel de funciii:
nume(parametrul1,parametrul2,...);

Observatie:

O functie poate sa nu contina parametrii.

In acest caz atat la declarare cat si la definire si apel numele functiei va fi
urmat de paranteze rotunde, dar fara sa contina nici un parametru.

Parantezele sunt obligatorii pentru a informa compilatorul ca este vorba
despre o functie si nu de o variabila.

1.3.5. Modul de functionare al unui program care contine una sau mai multe
functii

In momentul in care se apeleaza o functie controlul programului se va da
functiei respective pentru a fi executata.

In momentul apelarii unei functii se intpl& mai urmatoarele:

> Se aloca spatiu pe segmentul de stiva unde se memoreaza parametrii
functiei (aca functia are parametrii).
» Se salveaza adresa instructiunii urmatoare apelului, pentru ca la revenirea
din functie programul sa continue cu instructiunea urmatoare.
» Salt la prima instructiune a funciiei
> Se aloca spatiu pe segmentul de stiva unde se memoreaza variabilele
locale (daca au fost declarate variabile locale).
> Se executa in segventa instructiunile functiei apelate.
> Se elibereaza segmentul de stiva alocat functiei.
» Se revine in punctul in care s-a apelat functia si programul continua cu
instructiunea urmatoare
Program Functia | [3 > Segment de
f(...) N date
[J
[J
e Apel functie f(...) -
—
e Instructiunea Sggment de
urmatoare apelului stiva

1.3.6. Transmiterea parametrilor

Parametrii unei functii au rolul de a transmite date funciiei si/sau de a
transmite date din functie spre zona de program care a apelat functia. Parametrii se
descriu prin tipul si numele lor, in antetul functiei, despartiti intre ei prin virgula.

Parametrii care se afla in antetul functiei se numesc parametri formali iar cei
care se afla in instructiunea de apel a functiei se numesc parametri efectivi.

Numele (identificatorii) parametrilor formali poate sa fie diferit de numele
parametrilor efectivi sau poate sa coincida.

Transmiterea parametrilor se face prin corespondenta, din acest motiv
intre parametrii formali si cei efectivi trebuie sa existe o anumita concordanta:

» Numarul parametrilor formali trebuie sa coincida cu numarul parametrilor
reali. Existd o singura exceptie si anume parametrii cu valoare implicita,
despre care vom vorbi mai tarziu.

» Ordinea parametrilor formali trebuie sa fie aceeasi cu cea a parametrilor
efectivi, deoarece dupa cum am spus transmiterea parametrilor se face prin
corespondenta.

» Tipul parametrilor efectivi trebuie sa poata fi convertit implicit in tipul
parametrilor formali sau sa coincida.

Exemplu:

int suma (int a, float b)

x=suma(2, 314);

» Parametrii se memoreaza pe segmentul de stiva pus la dispozitia functiei in
momentul apelarii ei. Acestia se memoreaza in ordinea in care au fost trecuti
in antetul funciiei.

» Parametrii transmisi si memorati pe segmentul de stiva sunt variabile locale,
iar numele lor este cel din lista de parametrii formali.

Din punctul de vedere al modului de transmitere a parametrilor putem imparti
parametrii in doua categorii: parametrii transmisi prin valoare si parametrii
transmisi prin referinta.

1. Parametrii transmisi prin valoare

Parametrii transmigi prin valoare au rolul de a transmite date din zona de program
in care s-a apelat functia inspre funciie.

Functia va memora aceste date pe segmentul de stiva pus la dispozitie. Dupa
terminarea executiei functiei, segmentul de stiva se elibereaza si astfel programul nu
mai are acces la variabilele memorate pe stiva. Din acest motiv parametrii transmisi
prin valoare nu pot transmite datele modificate in cadrul funciiei inspre zona de
program de unde a fost apelata functia.

Prin valoare se pot transmite: variabile, expresii si chiar functii.

Exemplu:

Rezultatul rularii programului:
a=4 b=7
xX=2 y=3
a=6 b=9
X=2y=3

Observati ca in urma apelarii functiei f(), desi in interiorul functiei variabilele a
si b si-au modificat valorile, noile valori nu s-au transmis variabilelor x si vy,
acestea raman nemodificate.

Acest lucru se intdmpla datorita faptului ca pe segmentul de stiva s-a
creat o copie a variabilelor x si y cu numele a si b, iar functia opereaza
asupra acestora.

La terminarea executiei functiei, se elibereaza segmentul de stiva iar
valorile variabilelor a si b se pierd.

Segment de stiva Segment de stiva
a a

b b

Wi 37 disp
terniiiarea executiei fernnereeoxecutiel

La declararea unei functii putem specifica o valoare implicita pentru unii
parametrii.

10

in cazul in care nu existd parametrii efectivi corespunzatori, vor fi folosite de
catre functie valorile implicite.
In cazul in care se transmit parametrii efectivi, se vor folosii valorile acestora.

Privi{i exemplul de mai jos:

#include <iostream.h>
void afisare(int a,int b=1,int c=2); //b si ¢ sunt parametrii cu valori implicite

void main()

{/lam specificat valori pentru toti parametrii, functia le va utiliza pe cele specificate ca

[Iparametrii efectivi
afisare(3,4,5);

/lam specificat valori doar pentru a si b, pentru c se va folosi valoarea implicita
afisare(5,6);

/lam specificat valori doar pentru a , pentru b si ¢ se vor folosi valoarile implicite
afisare(7);

}

void afisare(int a,int b,int) //mu se specifica de doui ori valoarea implicita
{cout<<"a="<<a<<" b="<<ph<<" c="<<c<<endl;

}

In exemplul de mai sus antetul functiei contine doi parametri cu valori implicite b=1 si
c=2.

La apelul afisare(3,4,5); s-au transmis toti cei 3 parametrii iar functia a folosit
valorile transmise.

La apelul afisare(5,6); s-au transmis 2 parametrii iar functia a folosit valorile
transmise pentru a si b si valoarea implicita pentru c.

La apelul afisare(7); s-a transmis doar valoarea parametrului a iar pentru b si c
s-au folosit valorile implicite.

2. Parametrii transmisi prin referinta

De multe ori este necesar sa modificam in interiorul unei functii valorile unei
variabile externe functiei. In acest scop se folosesc parametrii transmisi prin referinta.

Prin urmare rolul parametrilor transmisi prin referinta este ca la revenirea
din functie, variabila transmisa, sa retina valoarea modificata in timpul
executiei functieie.

Pentru ca un parametru sa fie transmis prin referinfa numele lui trebuie sa fie
precedat de caracterul ampersand &, la declararea parametrilor, in antetul functiei.

Caracterul ampersand specifica faptul ca parametrul este transmis prin
referinta si nu prin valoare.

11

Exemplu:

int f(int &a, int &b);

fC x , y)

Atunci cand o variabila este transmisa prin referinta, nu se face o copie a ei pe
segmentul de stiva ci se retine pe segmentul de stiva adresa variabilei insasi. Cu
alte cuvinte modificarile se efectueaza la adresa retinuta, prin urmare chiar asupra
variabilei transmise.

O functie poate avea unul sau mai mulii parametrii transmisi prin
referinta.

Parametrii efectivi corespunzatori parametrilor transmisi prin referinta
trebuie sa fie nume de variabile.

Sa analizam urmatorul exemplu:

#include <iostream.h> [IPARAMETRII TRANSMISI PRIN REFERINTA
void f(int &a,int b); //parametrul a este transmis prin referinta
/Iparametrul b este transmis prin valoare
void main()
{ intx=1,y=2;
cout<<"x="<<x<<" y="<<y<<endl; /Ix si 'y inainte de apelatrea functiei
f(x.y);
cout<<"x="<<x<<" y="<<y<<endl; IIx si'y dupa apelatrea functiei
¥
void f(int &a,int b)
{a=2%*3; //modificarea valorilor prametrilor a si b
b=2*Db;
cout<<"a="<<a<<" b="<<b<<endl; I/ 'a si b in functie
¥

Rezultatul rularii:

x=1y=2
a=2 b=4
a=2 b=2

Parametrul a este transmis prin referinta iar parametrul b este transmis
prin valoare.

Initial x=1 si y=2, in cadrul functiei a devine 2 iar b devine 4.

Deoarece a este un parametru transmis prin referinta valoarea lui este
transmisa in x. Intrucat b este parametru transmis prin valoare, y nu preia valoarea
modificata a lui b

12

1.4. Probleme rezolvate

1. Se citeste o litera si un numar intreg n. Sa se calculeze:
-pentru literaa S1=1%+ 3%+ 5%+ ... + (2n-1)?
-pentru litera b S2=1 + 1*2+1*2*3 + ... +1*2*3...n

13

2. Se citeste un numar natural n. Sa se numere cate cifre pare si cate cifre
impare are numarul.

Vom realiza o functie cifre pentru numararea cifrelor pare si impare, careia ii
transmitem 3 parametrii.

n — numarul citit, parametru transmis prin valoare

c_pare-numarul cifrelor pare, parametru transmis prin referinta, care va
transmite numarul cifrelor pare ale numarului, din functie inspre programul
apelant.

c_impare-numarul cifrelor impare, parametru transmis prin referinta, care
va transmite numarul cifrelor impare ale numarului, din functie inspre
programul apelant.

Functia cifre va returna programului principal numarul cifrelor pare si numarul
cifrelor impare, prin intermediul parametrilor transmisi prin referinta.

#include <iostream.h> /INR. CIFRE PARE SI IMPARE
void cifre(int n, int &x, int &y); //declararea functiei cifre
void main()

{long n;

int c_pare=0,c_impare=0; //c_pare-nr. cifrelor pare,c_impare-nr. Cifrelor impare
cout<<"n="; cin>>n;

cifre(n,c_pare,c_impare);

cout<<"nr. cifre pare="<<c_pare<<endl;

cout<<"nr. cifre impare="<<c_impare<<endl;

¥
void cifre(int n, int &x, int &y) //definirea functiei cifre
{ while (n) //cat timp numarul mai are cifre
{if (n%210)%2==0) /Iverifica daca ultima cifra a numarului este para
X++; //incrementeaza numarul cifrelor pare
else
y++; /lincrementeaza numarul cifrelor impare
n/=10; /lelimina ultima cifra
}
¥

3. Se citeste un numar natural n. Sa se verifice si sa se afiseze daca este un
numar prim, altfel sa se afiseze descompunerea in factori primi.

Definim o functie prim, care primeste ca parametru transmis prin valoare
numarul n si returneaza 1 daca numarul este prim si 0 daca numarul nu este prim.

Definim de asemenea o funciie factori, functie fara tip, care primeste ca
parametru numarul n si afiseaza factorii primi si ordinul lor de multiplicitate.

14

4. Se citeste un numar natural n. Sa se descompuna in suma de numere fibonacci.

Definim functia max_f, care determina cel mai mare numar fibonacci mai mic
sau egal cu un numar dat. Functia primeste ca parametru transmis prin valoare
numarul dat.

Definim functia fibo, care apeleaza functia max_f si astfel determina max, cel
mai mare numar fibonacci mai mic sau egal cu numarul dat, apoi scade din numarul
dat, numarul max.

Se reia algoritmul atata timp cat numarul dat este diferit de zero.

15

5. Se citeste un numar natural n in baza 10 si b un numar natural 2<=b<=9
reprezentand o baza de numeratie. Sa se transforme numarul n in baza b.

Vom scrie o functie conv, de tip void, cu doi parametrii transmisi prin valoare,
respectiv n si b.

Rezultatul conversiei il vom memora intr-un tablou unidimensional t.

In finalul functiei afisdm continutul tabloului in ordinea inversa construirii lui.

16

/I[CONV 10->b

#define MAX 20

void conv(int n, int b); //antetul functiei

void main()

{int n,b;

cout<<"n="; cin>>n; //mumarul in baza 10

cout<<"b="; cin>>b; //baza de numeratie

conv(n,b); //apelul functiei de conversie

¥

void conv(int n, int b) //definirea functiei conv

{int i=0,j,{{MAX];

while (n)
{t[i++]=n%b; //restul impartirii lui n la b se depune in tabloul t
n=n/b; //n devine catul impartirii lui n la b
}

for(j=i-1;>=0;j--) //afisarea numarului in baza b
cout<<t[j];

t

6. Se citeste un numar natural n si apoi n cifre reprezentand un numar in baza b,
1<=b<=9. Sa se transforme numarul dat din baza b in baza 10.

Vom realiza doua functiii. Functia citire, pentru citirea numarului in baza b si a
bazei. Functia va avea 3 parametrii:

» n, numarul de cifre, parametru transmis prin referinta

» t- tablou unidimensional care va contine cifrele numarului, acest parametru se
transmite prin valoare desi rezultatul citirii trebuie transmis si celorlalte funciii.
Intrucat numele unui tablou este adresa primului octet din tablou. Fiind
adresa, modificarile se realizeaza in functie chiar asupra tabloului la adresa la
care este memorat tabloul in segmentul de date.

» b-baza de numeratie, parametru transmis prin referinta

Functia conv, converteste numarul din baza b in baza 10. Returneaza numarul in

baza 10. Functia are trei parametrii transmisi prin valoare: n, t, b, cu semnificatia de
mai sus.

17

18

1.6. Probleme propuse

1.

Sa se afiseze numerele naturale mai mari decat 100 si mai mici decat 500
care au toate cifrele distincte utilizand o functie care primeste ca parametru un
numar si returneaza 1 daca are toate cifrele distincte si 0 daca nu sunt
distincte.

Se citesc n numere. Sa se afiseze numerele obtinute prin inversarea cifrelor.

Sa se afiseze toate numerele pana la 1000 al caror patrat se termina cu cifra
n.

Se citesc numere naturale pana la intalnirea lui 0. Sa se afiseze inversele
numerelor citite, pentru care media aritmetica a cifrelor este strict mai mica
decéat 5.

Se citesc n numere naturale. Sa se calculeze suma numerelor care au toate
cifrele pare. Daca nu exista nici un astfel de numar se va afisa un mesa,;.

Calculati suma si produsul divizorilor proprii ai unui numar citit.
Fiind dat un numar natural n, sa se afiseze toti divizorii sai si media aritmetica
a divizorilor sai cuprinsi intre doua valori citite a si b sau un mesaj, daca nu

are divizori intre aceste valori.

Fiind dat un numar natural n, afisati divizorii sai si numarati cati dintre acestia
sunt numere prime.

Sa se genereze toate numerele prime mai mici sau egale cu un numar n citit
de la tastatura.

10.Scrieti un program care calculeaza suma a doua fractii ordinale. Afisarea se

va face dupa simplificarea fracfjilor.

11.Se citeste un numar natural n. Sa se stabileasca daca acesta este un termen

al sirului lui Fibonacci.

12.Se citeste un numar natural n diferit de 0. Sa se scrie toate tripletele de

numere pitagoreice (a’+b?=c?), mai mici decat n, nenule.

13.Se citeste un numar natural n, in baza 10. Sa se transforme numarul in baza

16.

14. Se citesc n caractere reprezentand un numar in baza 16. Sa se transforme in

baza 10.

19

