
Elementele de bază ale
limbajului de programare C++

Sumar

1. Competenţe . 3
2. Noţiuni introductive . 4
3. Structura generala a unui program C++ . 9
4. Elementele de limbaj . 11
5. Vocabularul limbajului C++ . 12
6. Tipuri simple de date . 18
7. Constante şi variabile . 21
8. Operatori şi expresii . 25
9. Operaţii de citire şi scriere . 38
10. Instrucţiunile limbajului C++ . 44
11. Aplicaţii . 74
12. Bibliografie & webografie . 75

1. Competenţe

Competenţe generale

•implementarea algoritmilor într-un limbaj de programare

•aplicarea algoritmilor fundamentali în prelucrarea datelor

Competenţe specifice

•transcrierea algoritmilor din limbaj pseudocod în limbaj de
programare

•elaborarea unui algoritm de rezolvare a unor probleme din aria
curriculară a specialităţii

•alegerea unui algoritm eficient de rezolvare a unei probleme

2. Noţiuni introductive

Noţiuni introductive
Orice limbaj constituie un mijloc de comunicare între
două entităţi: emiţătorul şi receptorul.

În general limbajele sunt de două tipuri:

• limbaje naturale;

• limbaje artificiale.

Limbajele naturale s-au constituit de-a lungul timpului, în
procesul conlucrării membrilor societăţii.

Limbajele artificiale au fost şi sunt create pentru
comunicarea într-un domeniu particular de activitate.

Noţiuni introductive

• Limbajele de programare fac parte din

categoria limbajelor artificiale, fiind utilizate
în procesul de comunicare om-calculator.

• Un limbaj de programare reprezintă un

mijloc de comunicare între programator
şi calculator.

Noţiuni introductive

Repere istorice în evoluţia limbajelor de
programare:

• 1955 – FORTRAN (FORmula TRANslation)
• 1960 – ALGOL (ALGOrithmic Language)
• 1960 – COBOL (COmmon Business Oriented

Language)
• 1971 – Pascal (Blaise PASCAL)
• 1972 – C
• 1980 – C++
• 1995 – Java

Noţiuni introductive

Limbajul de programare C++

La începutul anilor 70 a apărut limbajul C –
creaţia lui Dennis Ritchie şi Brain Kernighan.

Limbajul C++ este creaţia lui Bjarne Stroustrup

şi reprezintă o extensie a limbajului C care
permite programarea pe obiecte.

Noţiuni introductive

Realizarea unui program scris în C++ necesită parcurgerea a
patru etape:

• editare – scrierea programului sursă, prin crearea unui fişier cu
extensia cpp;

• compilare – se aduce în memoria internă programul sursă, se
verifică erori şi se converteşte acest program în program
obiect, având extensia obj;

• link-editare – se leagă programul obiect cu bibliotecile de
sistem şi se transformă într-un program executabil având
extensia exe;

• execuţie – se lansează în execuţie programul obiect: se
efectuează citirea datelor, calculele şi scrierea rezultatelor,
formându-se fişierul.

3. Structura generală a unui program C++

Structura generală a unui program C++

• un program C++ este constituit dintr-o succesiune de module,
denumite funcţii

• una dintre aceste funcţii este funcţia principală, denumită main()

• main() este o funcţie specială, care trebuie să apară obligatoriu o
singură dată în orice program C++

• execuţia oricărui program începe cu funcţia main()

• o funcţie este constituită din antet şi corp

• antetul funcţiei conţine numele funcţiei, tipul rezultatului pe care îl
calculează funcţia şi o listă de parametri prin care funcţia comunică
cu exteriorul ei, încadrată între paranteze rotunde

• corpul funcţiei conține declarații și instrucțiuni care specifică
prelucrările realizate de funcția respectivă

Structura generală a unui program C++

Forma funcţiei main

int main()
{

. . . .
return 0;

}

Instrucţiunea return este utilizată pentru a încheia
execuţia unei funcţii şi a returna valoarea expresiei
specificate în instrucţiunea return ca valoare a
funcţiei.

4. Elementele de limbaj

Limbajul C++ este caracterizat de:

• sintaxă – este formată din totalitatea regulilor

de scriere corectă a programelor;

• semantică – reprezintă semnificaţia

construcţiilor corecte din punct de vedere

sintactic;

• vocabular – este format din totalitatea

cuvintelor care pot fi folosite într-un program.

5. Vocabularul limbajului C++

Vocabularul limbajului C++ este format din:

• setul de caractere;

• identificatori;

• cuvinte cheie;

• comentarii;

• separatori.

Vocabularul limbajului C++

a. Setul de caractere

Setul de caractere utilizat pentru scrierea
programelor C++ este setul de caractere al
codului ASCII.

Codul ASCII este format din:

• literele mari şi mici ale alfabetului latin (A-Z, a-z);

• cifrele sistemului de numeraţie zecimal (0-9);

• caracterele speciale (blank, +, *, %, =, {, !, #, etc.).

Vocabularul limbajului C++

b. Identificatori
Identificatorii (numele) au rolul de a denumi elemente ale

programului precum constante, variabile, funcţii etc.
Identificatorii:
• reprezintă o secvenţă de litere, cifre şi _ (linia de

subliniere) care trebuie să înceapă cu _ sau cu o
literă;

• nu pot fi cuvinte cheie (rezervate) ale limbajului.

Exemple -corecte Contraexemple -incorecte

suma
Suma
suma1
suma_1
_suma

suma 1
1suma
suma+1
suma&nr
suma nr

Vocabularul limbajului C++

c. Cuvinte cheie (rezervate)

Cuvintele cheie (keywords) sunt cuvinte care au un
înţeles bine definit şi nu pot fi folosite în alt
context.

Exemple

void default for struct

break do if switch

case double int unsigned

char else long while

const float return

Vocabularul limbajului C++

d. Comentarii

Pentru ca un program să fie uşor de înţeles se
folosesc comentariile. Acestea sunt texte care
vor fi ignorate de compilator, dar au rolul de a
explicita pentru programator anumite
secvenţe de program.

// comentariu

sau

/*comentariu

comentariu

..........*/

Vocabularul limbajului C++

e. Separatori

Separatorii se folosesc pentru a delimita
unităţile sintactice. Separatori:

• blank

• TAB

• caracterele de control CR (Carriage
Return=pozitioneaza cursorul in coloana 1 a
noului rand)+LF(Line Feed =rand nou) generate
de tasta Enter

• virgula

6. Tipuri simple de date

Tipuri simple de date (standard)

Prin date se înţelege, în general, tot ceea ce este prelucrat de un
calculator. Fiecare dată are un anumit tip.

Un tip de date defineşte:

• mulţimea valorilor pe care le pot lua datele de tipul respectiv;

• modul de reprezentare a acestora în memorie;

• operaţiile care se pot efectua cu datele respective.

Clasificarea tipurilor de date:

• tipuri de date predefinite - asociate cu un cuvânt cheie, utilizat
în declaraţie;

• tipuri de date definite de utilizator.

Tipuri simple de date

Tipuri standard în C++:

• int şi long – pentru memorarea numerelor întregi;

•float şi double pentru memorarea numerelor reale;

• char – pentru memorarea caracterelor;

• void – pentru tip neprecizat.

Tipul void este un tip special, pentru care mulţimea
valorilor este vidă. Acest tip se utilizează atunci când
este necesar să specificăm absenţa oricărei valori. De
exemplu, poate fi utilizat pentru a specifica tipul unei
funcţii care nu returnează niciun rezultat.

Tipuri simple de date
• Tipuri standard în C++. Domeniul de valori şi dimensiunea

memoriei ocupate:

Tipul NUME TIP DIMENSIUNE IN BITI DOMENIU

Tipul întreg unsigned int 16 0..65535

short int 16 -32768..32767

int 16 -32768..32767

unsigned long 32 0..4294967295

long 32 -2147483648..2147483647

Tipul real float 32 3.4*pow(10,38)

double 64 1.7*pow(10.308)

long double 80 1.1*pow(10,4932)

Tipul caracter unsigned char 8 0..255

char 8 -128..127

7. Constante şi variabile

Constante şi variabile

O categorie aparte de date o reprezintă
constantele şi variabilele.

Constantele

• constanta are un tip şi o valoare fixă pe toată durata
execuţiei programului care o conţine;

• tipul şi valoarea unei constante se definesc prin
caracterele care compun constanta respectivă.

Constantele se clasifică astfel:

• numerice: - întregi - reale
• caracter
• şir de caractere

Constante şi variabile
Declararea constantelor
Sintaxa:

const [tip_dată] nume=valoare;

unde:

• const este un cuvânt cheie care înseamnă definirea unei constante simbolice;

• tip_dată precizează tipul constante (poate lipsi);

• nume este identificatorul constantei;

• valoare este valoarea constantei.

Exemple

const int a=0;

const int x=-5;

const b=0;

const float PI=3.14;

const char a=‘a’;

const char sir[]=“info”;

Constante şi variabile

Variabile

• nume asociat cu una sau mai multe locaţii de
memorie;

• valoarea păstrată în aceste locaţii se poate

modifica în cursul execuţiei programului;

• trebuie declarate – se specifică tipul şi

numele.

Constante şi variabile

Declararea variabilelor
Sintaxa:

tip_dată nume;

unde:

•tip_dată precizează tipul datei memorate în variabila de memorie;

• nume este identificatorul variabilei de memorie.

Exemple

int a;

int x,y;

char b;

int a,b=1, c=2;

float d=1;

float e=1.234;

char f='a';

long x1,x2;

unsigned int p,q;

char sir[]="info";

8. Operatori şi expresii

Operatori şi expresii Operatori Operatorii sunt
caractere speciale care indică operaţia care se
efectuează în cadrul unui program. Clasificarea
operatorilor:

• operatori aritmetici;
• operatori relaţionali;
• operatori de egalitate;
• operatori de incrementare şi decrementare;
• operatori logici;
• operatori de atribuire;
• operatorul „,‟ (virgulă);

• operatorul de conversie explicită.

Operatori şi expresii
a. Operatori aritmetici

•- minus (unar) – pentru semn

•+ plus (unar) – pentru semn

•+ (binar) – adunare

•- (binar) – scădere

•* (binar) – înmulţire

•/ (binar) – împărţire întreagă

•% (binar) – restul împărţirii întregi

Exemple

int a=3,b=4,p,c,r;

p=a*b;

c=a/b+p;

r=a%b;

Operatori şi expresii

b. Operatori de comparaţie (relaţionali)

< mai mic

> mai mare

<= mai mic sau egal

>= mai mare sau egal

Rezultatul obţinut în cazul aplicării unuia dintre
operatorii relaţionali este true sau false.

Exemple 2<=5

4<3

int x=4,y=5,c;

c=x>y;

Operatori şi expresii

c. Operatori de egalitate

== egal

!= diferit

Rezultatul obţinut în cazul aplicării unuia dintre
operatorii de egalitate este true sau false.

Exemple 3==3

5==8

3!=6

4!=4

int a=8,b=8,x;

x=a==b;

Operatori şi expresii

d. Operatori de incrementare şi decrementare

++ incrementare (adună 1)

-- decrementare (scade 1)

Exemple

int a=8,b=4,c=6,x;

a++; //a=9

x=b--; //x=4, b=3

x=++c; //x=7, c=7

Operatori şi expresii
e. Operatori logici
&& ŞI logic
|| SAU logic
! negaţie

Rezultatul obţinut în

cazul aplicării unuia

dintre operatorii logini
este true sau false.

Exemple

a<=b && a<=c

a>5 || b<8

!(a==b)

Operatori şi expresii
f. Operatori de atribuire

= egal

*=

/=

%=

+=

-=

Exemple

int a=2,b=3,c=4;

a=b;

b+=a; //b=b+a

c=b=a;

Operatori şi expresii

g. Operatorul ‘,’ (virgulă)

Separă mai multe expresii.

Exemple
int a=1, b=5;
float c;
c=a=b+1,a=c+2,b=b+1;
//b+1=6; a=6; c=6
//a=6+2=8;
//b=5+1=6;

Operatori şi expresii

h. Operatorul de conversie explicită Pentru ca un
operand să intre în calcul convertit aşa cum ne
dorim (nu implicit) înaintea operandului se
trece tipul său. Exemple

float x=25.79; //x=25.79

int y;

y=x; //y=25

x=(int)x; //x=25

x=int(x); //x=25

float a=8, b=3, c;

c=a/b; //c=2.66667

Operatori şi expresii
• Prioritatea operatorilor

Clasă de operatori Operatori Asociativitate
Unari ! - (unar) ++ -- de la dreapta la stânga

Multiplicativi * / % de la stânga la dreapta

Aditivi + - de la stânga la dreapta

Atribuire = de la dreapta la stânga

relaţionali < <= > >= de la stânga la dreapta

de egalitate == != de la stânga la dreapta

logici && de la stânga la dreapta

logici || de la stânga la dreapta

atribuire şi aritmetici
binari

= *= /= %= += -= de la dreapta la stânga

Operatori şi expresii
Expresii

O expresie este alcătuită din unul sau mai mulţi operanzi

legaţi între ei prin operatori. Operanzii pot fi constante,
variabile sau funcţii.

Operanzii reprezintă valorile care intră în calcul, iar

operatorii desemnează operaţiile care se execută în
cadrul expresiei.

expresie = operatori + operanzi

Tipul unei expresii reprezintă tipul valorii expresiei.

Expresiile se împart în două categorii:

• expresii aritmetice;

• expresii logice.

Operatori şi expresii

a. Expresii aritmetice

• expresiile aritmetice sunt cele care efectuează
operaţii aritmetice având ca rezultat un număr
Exemple

int x=7, y=2, r;

r=x/y; //r=3

float x=7, y=2, r;

r=x/y; //r=3.5

int a; a=25/2*4-3+7/2; //a=48

Operatori şi expresii

b. Expresii logice
• o expresie logică descrie o condiţie
• valoarea unei expresii logice reprezintă valoarea

de adevăr a expresiei aferente
• o condiţie poate fi falsă/false (valoarea 0) sau

adevărată/true (o valoare diferită de 0)

Exemple int x=7, y=2;

x>=y //true

x!=y //true

x<y //false

9. Operaţii de citire şi scriere

Operaţii de citire şi scriere

În limbajul C++ operaţiile de introducere şi extragere date se execută
prin fluxurile de date.

Un flux de date (stream) reprezintă fluxul datelor de la sursă (de
exemplu tastatură) la destinaţie (de exemplu ecranul monitorului).

Prin fluxurile de date echipamentele periferice de intrare-ieşire sunt
conectate la programul C++.

Fluxuri de date standard

1. flux de date de intrare (cin);

2. flux de date de ieşire (cout).

Pentru operaţiile de citire şi scriere se folosesc instrucţiunile expresie
prin care se creează fluxurile de date, cu ajutorul operatorilor >> şi
<<.

Operaţii de citire şi scriere

a. Flux de date de intrare (cin)
•conectează tastatura la program

•execută operaţii de citire

•datele de intrare sunt furnizate programului
•datele sunt păstrate în variabile de memorie
•cin reprezintă tastatura

•operatorul de intrare >> înseamnă transmiterea unei
valori de la tastatură

Sintaxa:

cin>>nume_var;

sau

cin>>nume_var1>>nume_var2 >> … >>nume_varn;

Operaţii de citire şi scriere

Exemplu

int x=7,y=2,z=4;

cin>>x;

cin>>y;

cin>>z;

// considerăm că se introduc de la tastatură

valorile 10, 20 şi 30

Operaţii de citire şi scriere

2. Flux de date de ieşire (cout)
•conectează monitorul la program

•execută operaţii de scriere

•datele de ieşire sunt furnizate de program
•datele sunt transmise către monitor
•cout reprezintă monitorul

•operatorul de ieşire << înseamnă transmiterea unei valori către
monitor

Sintaxa:

cout<<nume_var|constantă;

sau

cout<<nume_var1|constantă1<< nume_var 2|constantă2<<
… <<nume_varn|constantăn;

Operaţii de citire şi scriere

Exemplu
int x=7,y=2,z=4;
cout<<x;

cout<<y;
cout<<z;

se va afişa: 724
iar pentru
cout<<x<<“ “;
cout<<10<<endl;
cout<<z;

se va afişa: 7 10
4

