Sortarea unui vector prin interschimbare C++
In continuare, este prezentata sortarea prin interschimbare a unui vector cu N elemente citite de la
tastatura. N-ul este, de asemenea, citit de la tastatura.
Sortare crescatoare:
#include <iostream>
using namespace std;
int main()
{
int N,i,j, v[100];
cin>>N;
for (i =1;1<=N;i++) cin>>V][i];//citire vector
//sortare
for (i=1;i<=N-1; i++)
for (j = i+1; j <=N; j++)
if (v[i] > v[iD)
{

int aux = v[i];

v[i] = v[il;

v[j] = aux;

}

/lafisare vector
for (i = 1; i <= N; i++) cout<<v[i]<<" ";
return O;

}
Bubble sort — Vectori C++

In continuare, este prezentata sortarea unui vector de N elemente citite de la tastatura, prin metoda
bubble sort. N-ul este, de asemenea, citit de la tastatura.
Principiul dupa care actioneaza bubble sort:

Sortare crescatoare:

#include <iostream>

using namespace std;

int main(){
int N, v[100], i,j,sortat;
cin>>N;
for (I =1; 1 <= N; i++) cin>>V]i];
do{
sortat = 1;

for (i=1;1<=N-1; i++)
if (V[i] > v[i+1])
{
int aux = V[i];
v[i] = v[i+1];
v[i+1] = aux;
sortat = 0;
}
while(sortat == 0);
for (i = 1; 1 <= N; i++) cout<<v[i]<<" ",
return O;

¥

Sortarea vectorilor, pag 1

Sortarea prin insertie

Fie un tablou unidimensional care contine n valori intregi.

Realizati un program care ordoneaza crescator elementelor vectorului folosind ,,algoritmul de
insertie”.

Solutia: Elementele vectorului sunt impartite in doua liste: sortata si nesortata.

La fiecare pas primul element al listei nesortate este transferat in lista sortata, exact pe pozitia prin
care se respecta ordinea crescatoare a elementelor.

Aceasta operatie se va realize prin deplasarea cu o pozitie spre dreapta a tuturor elementelor mai
mari decat el.

Exemplu:

Fie vectorul a=(3,2,1,6,4).

Lista ordonata va fi formata initial din primul element iar lista neordonata de celelalte (n-1)
elemente

Pas 1: Se cauta locul lui 2 in lista ordonata (3) si se va deplasa cu o pozitie spre dreapta primul
element ==> se obtine vectorul a=(2,3,1,6,4)

Pas 2: Se cauta locul lui 1 in lista ordonata (2,3) si se va deplasa cu o pozitie spre dreapta
elementele 2 si 3 ==> se obtine vectorul a=(1,2,3,6,4)

Pas 3: Pentru ca 6>3 nu se vor realiza deplasari, vectorul a ramane acelasi a=(1,2,3,6,4)

Pas 4: Se cauta locul lui 4 in lista ordonata (1,2,3,6) si se va deplasa cu o pozitie spre dreapta
elementul 6 ==> se obtine vectorul a=(1,2,3,4,6)

// Sortarea prin insertie — Sortarea unui tablou unidimensional
#include<iostream.h>

int v[25],i,j,n,X;

void main()

{
cin>>n;
for(i=1;i<=n;i++)cin>>V[i];

for(i=1;i<=n;i++) cout<<v[i]<<””;

[/l Sortarea prin INSERTIE
for(i=2;i<=n;i++) /I parcurg vectorul nesortat de la a 2-lea element pana la sfarsit

if (v[i]<v[i-1]) // primul element din vectorul nesortat se plaseaza pe pozitia
corespunzatoare

{x=v[i]; //valoarea lui v[i] se pierde din vectorul nesortat

j=i-1;

while (j>=0 && V[j]>x)

/l mut cu o pozitie spre dreapta toate elementele mai mari decat x=V[i]

{
vii+1]=v[il;
J--
v[j+1]=x; // insertia primului element pe pozitia corespunzatoare in vectorul
sortat
}
cout<<endl;

for(i=1;i<=n;i++) cout<<v[i]<<”,;}

Sortarea vectorilor, pag 2

Sortarea prin selectie (selectia minimului)
Fiecare element v[i] se compara cu toate aflate dupa el. Daca se gaseste un element mai mic

decat Vv[i] atunci acestea se vor interschimba. Cand v[i] si-a incheiat rolul de pivot, partea din
vector pana la acesta inclusiv, este sortata crescator. */

#include<iostream.h>
int v[25],n,i,j,aux,Min, poz;
void main()
{
cin>>n;
for(i=1;i<=n;i++)cin>>V[i];
for(i=1;i<=n;i++) cout<<v[i]<<” ,,;
for(i=1;i<=n-1;i++)
{
Min=v[i];poz=i;
for(j=i+1;j<=n;j++)
if(v[i]>V[j])
{ Min=v[j];
poz=j;
}
v[poz]=Vv[i];
v[i]=Min;
}
cout<<endl:
for(i=1;i<=n;i++)cout<<v[i]<<”,,;

}

Sortarea vectorilor, pag 3

Sortarea prin numarare
Enunt:

Fie un tablou unidimensional care contine n valori intregi.

Realizati un program care ordoneaza crescator elementelor vectorului folosind ,,algoritmul de
numarare”.

Solutia:

Consideram vectorul A. Algorituml de sortare prin numarare consta in gasirea pentru fiecare
element A[i] a numarului de elemente din vector mai mici decat el.

Numerele obtinute sunt memorate intr-un alt vector B.

Elementele vectorului A vor fi initial salvate in vectorul auxiliar C.

La finalul algoritmului se vor rescrie in ordine crescatoare elementele vectorului A pe baza valorilor
memorate in B si C

Exemplu:

Fie vectorul A=(30,20,1,6,4).

Pas 1: Se realizeaza o copie a vectorului A in C. Se va obtine vectorul C=(30,20,1,6,4).

Pas 2: Se determina elementele vectorului B astfel:

BJi]=cate elemente mai mici decat A[i] sunt in vectorul A Se va obtine vectorul B=(4,3,0,2,1).

Pas 3: Se completeaza elementele vectorului A astfel: A[B[i]]=C[i]. Se va obtine A=(1,4,6,20,30).

#include<iostream.h>
int a[25],b[25],c[25],n,i,j;

void main()

{

cin>>n;

for(i=0;i<n;i++) cin>>a[i];

for(i=0;1<n;i++) cout<<a[i]<<” ,,;

// Sortarea prin numarare

// Pasul 1 fac o copie a vectorului a in vectorul ¢
for(i=0;i<n;i++)c[i]=a[i];

I/ Pas 2 crearea vectorului bJi]
/l determinam pentru fiecare element cate elemente sunt mai mici

for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
if (ali]<a[j]) b[j]++;

else b[i]++;

/I Pasul 3 Se rescriu elementele lui a in ordine crescatoare
for(i=0;i<n;i++) a[b[i]]=c[i];

cout<<endl:

/I Afisarea vectorului sortat

for(i=0;i<n;i++) cout<<a[i]<<” ,,;

¥

Sortarea vectorilor, pag 4

