

Sortarea vectorilor, pag 1

Sortarea unui vector prin interschimbare C++
In continuare, este prezentata sortarea prin interschimbare a unui vector cu N elemente citite de la

tastatura. N-ul este, de asemenea, citit de la tastatura.

Sortare crescatoare:

#include <iostream>

using namespace std;

int main()

{

int N,i,j, v[100];

cin>>N;

for (i = 1; i <= N; i++) cin>>v[i];//citire vector

//sortare

for (i = 1; i <= N-1; i++)

 for (j = i+1; j <= N; j++)

 if (v[i] > v[j])

 {

 int aux = v[i];

 v[i] = v[j];

 v[j] = aux;

 }

//afisare vector

for (i = 1; i <= N; i++) cout<<v[i]<<" ";

return 0;

}

Bubble sort – Vectori C++
In continuare, este prezentata sortarea unui vector de N elemente citite de la tastatura, prin metoda

bubble sort. N-ul este, de asemenea, citit de la tastatura.

Principiul dupa care actioneaza bubble sort:

Sortare crescatoare:

#include <iostream>

using namespace std;

int main(){

int N, v[100], i,j,sortat;

cin>>N;

for (i = 1; i <= N; i++) cin>>v[i];

do{

 sortat = 1;

 for (i = 1; i <= N-1; i++)

 if (v[i] > v[i+1])

{

 int aux = v[i];

 v[i] = v[i+1];

 v[i+1] = aux;

 sortat = 0;

 }

}while(sortat == 0);

for (i = 1; i <= N; i++) cout<<v[i]<<" ";

return 0;

}

Sortarea vectorilor, pag 2

Sortarea prin insertie
Fie un tablou unidimensional care contine n valori intregi.

Realizati un program care ordoneaza crescator elementelor vectorului folosind „algoritmul de

insertie”.

Solutia: Elementele vectorului sunt impartite in doua liste: sortata si nesortata.

La fiecare pas primul element al listei nesortate este transferat in lista sortata, exact pe pozitia prin

care se respecta ordinea crescatoare a elementelor.

Aceasta operatie se va realize prin deplasarea cu o pozitie spre dreapta a tuturor elementelor mai

mari decat el.

Exemplu:

Fie vectorul a=(3,2,1,6,4).

Lista ordonata va fi formata initial din primul element iar lista neordonata de celelalte (n-1)

elemente

Pas 1: Se cauta locul lui 2 in lista ordonata (3) si se va deplasa cu o pozitie spre dreapta primul

element ==> se obtine vectorul a=(2,3,1,6,4)

Pas 2: Se cauta locul lui 1 in lista ordonata (2,3) si se va deplasa cu o pozitie spre dreapta

elementele 2 si 3 ==> se obtine vectorul a=(1,2,3,6,4)

Pas 3: Pentru ca 6>3 nu se vor realiza deplasari, vectorul a ramane acelasi a=(1,2,3,6,4)

Pas 4: Se cauta locul lui 4 in lista ordonata (1,2,3,6) si se va deplasa cu o pozitie spre dreapta

elementul 6 ==> se obtine vectorul a=(1,2,3,4,6)

// Sortarea prin insertie – Sortarea unui tablou unidimensional

#include<iostream.h>

int v[25],i,j,n,x;

void main()

{

cin>>n;

 for(i=1;i<=n;i++)cin>>v[i];

for(i=1;i<=n;i++) cout<<v[i]<<” ”;

// Sortarea prin INSERTIE

for(i=2;i<=n;i++) // parcurg vectorul nesortat de la a 2-lea element pana la sfarsit

 if (v[i]<v[i-1]) // primul element din vectorul nesortat se plaseaza pe pozitia

corespunzatoare

 { x=v[i]; // valoarea lui v[i] se pierde din vectorul nesortat

 j=i-1;

 while (j>=0 && v[j]>x)

// mut cu o pozitie spre dreapta toate elementele mai mari decat x=v[i]

 {

 v[j+1]=v[j];

 j--;

 }

 v[j+1]=x; // insertia primului element pe pozitia corespunzatoare in vectorul

sortat

 }

cout<<endl;

for(i=1;i<=n;i++) cout<<v[i]<<” „;}

Sortarea vectorilor, pag 3

Sortarea prin selectie (selectia minimului)
Fiecare element v[i] se compara cu toate aflate dupa el. Daca se gaseste un element mai mic

decat v[i] atunci acestea se vor interschimba. Cand v[i] si-a incheiat rolul de pivot, partea din

vector pana la acesta inclusiv, este sortata crescator. */

#include<iostream.h>

int v[25],n,i,j,aux,Min, poz;

void main()

{

cin>>n;

for(i=1;i<=n;i++)cin>>v[i];

for(i=1;i<=n;i++) cout<<v[i]<<” „;

for(i=1;i<=n-1;i++)

{

 Min=v[i];poz=i;

for(j=i+1;j<=n;j++)

if(v[i]>v[j])

{ Min=v[j];

poz=j;

}

 v[poz]=v[i];

 v[i]=Min;

}

cout<<endl;

for(i=1;i<=n;i++)cout<<v[i]<<” „;

}

Sortarea vectorilor, pag 4

Sortarea prin numarare
Enunt:

Fie un tablou unidimensional care contine n valori intregi.

Realizati un program care ordoneaza crescator elementelor vectorului folosind „algoritmul de

numarare”.

Solutia:

Consideram vectorul A. Algorituml de sortare prin numarare consta in gasirea pentru fiecare

element A[i] a numarului de elemente din vector mai mici decat el.

Numerele obtinute sunt memorate intr-un alt vector B.

Elementele vectorului A vor fi initial salvate in vectorul auxiliar C.

La finalul algoritmului se vor rescrie in ordine crescatoare elementele vectorului A pe baza valorilor

memorate in B si C

Exemplu:

Fie vectorul A=(30,20,1,6,4).

Pas 1: Se realizeaza o copie a vectorului A in C. Se va obtine vectorul C=(30,20,1,6,4).

Pas 2: Se determina elementele vectorului B astfel:

B[i]=cate elemente mai mici decat A[i] sunt in vectorul A Se va obtine vectorul B=(4,3,0,2,1).

Pas 3: Se completeaza elementele vectorului A astfel: A[B[i]]=C[i]. Se va obtine A=(1,4,6,20,30).

#include<iostream.h>

int a[25],b[25],c[25],n,i,j;

void main()

{

cin>>n;

for(i=0;i<n;i++) cin>>a[i];

for(i=0;i<n;i++) cout<<a[i]<<” „;

// Sortarea prin numarare

// Pasul 1 fac o copie a vectorului a in vectorul c

for(i=0;i<n;i++)c[i]=a[i];

// Pas 2 crearea vectorului b[i]

// determinam pentru fiecare element cate elemente sunt mai mici

for(i=0;i<n;i++)

for(j=i+1;j<n;j++)

if (a[i]<a[j]) b[j]++;

else b[i]++;

// Pasul 3 Se rescriu elementele lui a in ordine crescatoare

for(i=0;i<n;i++) a[b[i]]=c[i];

cout<<endl;

// Afisarea vectorului sortat

for(i=0;i<n;i++) cout<<a[i]<<” „;

}

