Instructiunile de control (structurile)

Incepem acest capitol cu precizarea ca in limbajul C++ toate structurile executi o singuri instructiune.
Daca e necesar sa fie executate mai multe instructiuni, se va utiliza instructiunea compusa (mai multe instructiuni
cuprinse intre paranteze acolade sunt interpretate de compilator ca si cum ar fi o singurd instructiune, numita
instructiunea compusa).

Structura alternativa (de decizie)

Structura alternativa are rolul de a alege o alternativa (care constd in executia o singurd datd a unei
instructiuni) dintre mai multe alternative (doua sau mai multe instructiuni care se pot executa, dar numai una dintre
ele este aleasd pentru executie).

Structura alternativa simpla. Instructiunea if...else
Sintaxa:

if (expresie)
instructiune_1;
[else
instructiune 2;]

Instructiunea se executa astfel:
Se evalueaza expresie si daca rezultatul e diferit de zero (corespunzator valorii logice True), se executd
instructiune_1, altfel, se executd instructiune_2.
Observatii:
1. Partea else instructiune_2; poate si lipseasca. In acest caz doar una dintre alternative se executi.
2. Fiecare alternativa executa o singura instructiune. Daca e necesara executia mai multor instructiuni, atunci
ele vor fi grupate intre paranteze acolade (fiind considerate o singura instructiune, instructiunea compusa).
3. instructiune poate fi orice instructiune recunoscutd de C++, inclusiv instructiunea if. Cand doua sau mai
multe instructiuni if sunt incluse una in alta, se spune cd avem instructiuni if imbricate.

Structura alternativa generalizata. Instructiunea switch...case
Sintaxa:

switch (expresie)

case exp_1: instructiune_1 break;
case exp_2: instructiune_2 break;

case exp_n: instructiune_n break;
[default: instructiune_n+1]

}

Instructiunea se executd astfel:
Se evalueaza expresie si apoi:
daca rezultatul obtinut este egal cu valoarea obtinuta in urma evaluarii:
e exp_1, se executa instructiune_1, dupa care se trece la executarea instructiunii care urmeaza dupa

switch;

e exp_2, se executd instructiune_ 2, dupa care se trece la executarea instructiunii care urmeaza dupa
switch;

e exp_2, se executd instructiune_ 2, dupa care se trece la executarea instructiunii care urmeaza dupa
switch;

exp_i, se executa instructiune_i, dupa care se trece la executarea instructiunii care urmeaza dupa switch;
e exp_n, se executd instructiune n, dupd care se trece la executarea instructiunii care urmeaza dupa
switch;
altfel se executd instructiunea instructiune n+1 dupa care se trece la executarea instructiunii care urmeaza dupa
switch.



Observatii:
1. expresie trebuie sa furnizeze un rezultat numeric intreg;
2. Rezultatele pentru fiecare caz n parte al exp_i trebuie sa fie valori constante intreqi;
3. Toate expresiile corespunzitoare cazurilor (exp_i) trebuie sa fie diferite intre ele;
4. Caracterul : este obligatoriu, fiind un separator intre eticheta cazului respectiv (case exp_i) si
instructiunea care se va executa (instructiune_i);
Colectia de instructiuni etichetate trebuie sa fie incapsulata intr-un bloc delimitat de accolade;
Eticheta default este optionala. Instructiunea atasatd instructiune_n+1 se executd numai daca nu a fost
indeplinit nici un caz anterior;
7. Instructiunea break; este obligatorie la fiecare caz in parte si are ca efect intreruperea executiei
instructiunii switch...case si trecerea la executarea urmatoarei instructiuni din program. Daca ea lipseste,
atunci e verificat si urmatorul caz.

Structura repetitiva
Structura repetitive are rolul de a repeta executia unei instructiuni sau a unui grup de instructiuni. Aceste structuri
au fost introduce 1n limbajele de programare cu scopul de a ugura munca programatorului ca sd nu repete scrierea
in mod repetat a aceleiasi instructiuni sau a unui grup de instructiuni in programul sursd. De cele mai multe ori,
nici nu e posibil sd implementdm un algoritm scriind in mod repetat aceste instructiuni pentru ca in majoritatea
cazurilor nu stim de céte ori ele trebuie repetate.

Structura repetitiva conditionata anterior
Instructiunea while

oo

Sintaxa:

while (expresie)
instructiune;

Instructiunea se executa astfel:

Se evalueazd expresie si dacad rezultatul este diferit de zero (corespunzator valorii logice True), se executd
instructiune, apoi se evalueaza din nou expresie si dacid rezultatul este diferit de zero se executd din nou
instructiune si asa mai departe (deci, se repeta executia instructiunii instructiune atita timp cét evaluarea
expresiei expresie furnizeaza uun rezultat diferit de zero). In momentul in care evaluarea expresie este zero
(corespunzator valorii False), se trece la executia instructiunii care urmeaza instructiunii while.

Observatii:

1. Structura while repetd o singura instructiune. Dacad este necesard repetarea unui grup de instructiuni,
atunci ele vor fi incapsulate ntr-o instructiune compusa.

2. while este o structura repetitiva cu un numar necunoscut de pasi conditionata anterior.

3. Instructiunea care se repeta poate fi chiar si o instructiune vida.

4. expresie poate fi formata si dintr-o expresie compusa din mai multe expresii legate cu operatorul virgula
(vezi exemplele de mai jos).

5. E obligatoriu ca instructiune sd modifice valorile unor anumite variabile care intervin in expresie, astfel
incat valoarea acesteia (dupa un numar finit de pasi) s fie zero, facand posibild iesirea din ciclu, altfel
am avea un ciclu infinit.

6. Deoarece mai intai se evalueazd expresie si numai daca valoarea sa e diferita de zero, se executa
instructiune, spunem cé structura while este o structura repetitiva conditionati anterior (evaluarea
expresiei se face anterior executiei instructiunii.

7. Intrucat evaluarea expresiei se face anterior executiei instructiunii, daca rezultatul evaluirii este zero chiar
de la inceput, atunci instructiune nu se va executa deloc.

8. instructiune poate fi orice instructiune recunoscuta de C++, inclusiv instructiunea while. Cand doua sau
mai multe instructiuni while sunt incluse una in alta, se spune ca avem instructiuni while imbricate.

Exemple:
#include <iostream>
using namespace std;
int main()

{

unsigned long long int a,s=0;

cin>>a;

while (a)

{

if (! (a%2))
s+=a;
cin>>a;

}

cout<<s;

return 0;}



#include <iostream>

using namespace std;

int main ()

{
unsigned long long int n;
unsigned s=0;
cin>>n;
while (s+=n%10,n/=10)
cout<<s;
return 0;

Expresia compusa cu ajutorul operatorului virguld din acest exemplu se evaluaza astfel: mai intéi se
evalueaza prima expresie (cu care se actualizeaza suma cifrelor s), apoi se evalueaza a doua expresie cu care se
elimina ultima cifrd din numar si rezultatul acestei expresii este memorat in variabila n (expresia fiind o atribuire).
Cum valoarea expresiei compuse din mai multe expresii legate cu operatorul virgule este dat de ultima expresie,
aici valoarea expresiei compuse este chiar valoarea lui n.

Instructiunea for
Sintaxa:

for (expresie_1;expresie_2;expresie_3)
instructiune;

Instructiunea se executa astfel:

Mai intai se evalueaza expresie_1 o singura data inainte de prima executie a instructiunii si are rolul de initializare.
Apoi se evalueazd expresie_2 avand rolul de testare, iar dacad rezultatul evaludrii este diferit de zero
(corespunzator valorii True) se va executa instructiune. Dupi aceea se evaluacaza expresie_3 care are rolul de
modificare prin schimbarea starii curente, astfel incat sa se avanseze spre starea finala.

In continuare se evalueaza expresie_2 si daci valoare ei e diferita de zero se execute din nou instructiune, dupa
care se evalueazd expresie_3 pentru a modifica starea curenta si tot asa pana cand, in urma evaluarii expresiei
expresie_2 se obtine valoarea zero (corespunzator valorii False), moment in care se incheie executia structurii for
si se trece la executia instructiunii care urmeaza dupa ea.

Observatii:

1. Oricare dintre cele trei expresii pot sa lipseasca (pot sa lipseasca chiar si toate), dar cei doi delimitatori ;
dintre cele trei expresii sunt obligatorii. Cand o expresie lipseste putem considera ca acolo figureaza o
expresie vida. Structura for(;;) are toate expresiile vide si ea execute un ciclu infinit. Un program care
contine un asemenea ciclu se numeste program care cicleaza la infinit. E de la sine inteles ca daca
lipseste expresie_2 instructiunea va executa un ciclu infinit.

2. Instructiunea for este tot o instructiune conditionata anterior ca si While, deoarece mai intéi se evalueaza
expresia (in cazul acesta expresie_2) si abia dupa aceea se executa sau nu instructiune.

3. 1In unele limbaje de programare instructiunea for este considerati o structurd repetitivd cu un numar
cunoscut de pasi, dar limbajul C++ e mult mai flexibil si ea poate fi utilizata si in situatii in care numarul
de pasi e necunoscut.

4. Deoarece mai intai se evalueazd expresie_2 si numai daca valoarea sa e diferitd de zero, se executd
instructiune, spunem cé structura for este o structura repetitivd conditionatid anterior (evaluarea
expresiei se face anterior executiei instructiunii.

5. Intrucat evaluarea expresiei se face anterior executiei instructiunii, daca rezultatul evaluirii este zero chiar
de la inceput, atunci instructiune nu se va executa deloc.

6. instructiune poate fi orice instructiune recunoscuta de C++, inclusiv instructiunea for. Cand doua sau
mai multe instructiuni for sunt incluse una in alta, se spune ca avem instructiuni for imbricate.

Exemple:

Structura repetitiva conditionata posterior

Instructiunea do...while
Sintaxa:

do
instructiune;
while (expresie);

Instructiunea se executd astfel:

Se executd instructiune dupa care se evalueaza expresie. Daca rezultatul evaluarii expresiei este diferit de zero
(corespunzator valorii True), se executd din nou instructiune, apoi se evalueaza din nou expresie si tot asa pana
cand valoarea expresiei va fi zero (corespunzator valorii False), se trece la executia instructiunii care urmeaza
instructiunii do...while.



Observatii:

1. Structura do...while repeta o singura instructiune. Dacé este necesara repetarea unui grup de instructiuni,
atunci ele vor fi incapsulate intr-o instructiune compusa.

2. Spre deosebire de while, structura do..while este 0 structuri repetitivi cu un numir necunoscut de
pasi conditionata posterior. Din acest motiv, instructiune se executd cel putin odatd, chiar daca
expresie are de la inceput valoarea zero. Prin urmare, cand utilizim structura do...while trebuie sa fim
foarte atenti deoarece putem sd avem erori logice cand implementdm un algoritm si utilizim aceasta
structura.

3. Instructiunea care se repetd poate si lipseasca (se considera ci existd acolo o instructiune vida), dar
expresie nu poate sa lipseasca niciodata (absenta ei genereaza o eroare de sintaxa).

4. expresie poate fi formata si dintr-o expresie compusa din mai multe expresii legate cu operatorul virgula
(vezi exemplele de mai jos).

5. E obligatoriu ca instructiune sa modifice valorile unor anumite variabile care intervin in expresie, astfel
incat valoarea acesteia (dupa un numar finit de pasi) sa fie zero, facand posibild iesirea din ciclu, altfel
am avea un ciclu infinit.

6. instructiune poate fi orice instructiune recunoscuta de C++, inclusiv instructiunea do...while. Cand doua
sau mai multe instructiuni do...while sunt incluse una in alta, se spune ca avem instructiuni do...while
imbricate.

Exemple:

#include <iostream>
using namespace std;
int main ()
{

do

{

}

while (1) ;
cout<<"DA";
return 0;



