

Instrucțiunile de control (structurile)
Începem acest capitol cu precizarea că în limbajul C++ toate structurile execută o singură instrucțiune.

Dacă e necesar să fie executate mai multe instrucțiuni, se va utiliza instrucțiunea compusă (mai multe instrucțiuni

cuprinse între paranteze acolade sunt interpretate de compilator ca și cum ar fi o singură instrucțiune, numită

instrucțiunea compusă).

Structura alternativă (de decizie)
Structura alternativă are rolul de a alege o alternativă (care constă în execuția o singură dată a unei

instrucțiuni) dintre mai multe alternative (două sau mai multe instrucțiuni care se pot executa, dar numai una dintre

ele este aleasă pentru execuție).

Structura alternativă simplă. Instrucțiunea if…else
Sintaxa:

if (expresie)

 instrucțiune_1;

[else

 instrucțiune_2;]

Instrucțiunea se execută astfel:

Se evaluează expresie și dacă rezultatul e diferit de zero (corespunzător valorii logice True), se execută

instrucțiune_1, altfel, se execută instrucțiune_2.

Observații:

1. Partea else instrucțiune_2; poate să lipsească. În acest caz doar una dintre alternative se execută.

2. Fiecare alternativă execută o singură instrucțiune. Dacă e necesară execuția mai multor instrucțiuni, atunci

ele vor fi grupate intre paranteze acolade (fiind considerate o singură instrucțiune, instrucțiunea compusă).

3. instructiune poate fi orice instrucțiune recunoscută de C++, inclusiv instrucțiunea if. Când două sau mai

multe instrucțiuni if sunt incluse una în alta, se spune că avem instrucțiuni if imbricate.

Structura alternativă generalizată. Instrucțiunea switch…case
Sintaxa:

switch (expresie)

{

 case exp_1: instrucțiune_1 break;

 case exp_2: instrucțiune_2 break;

 ………………………………….

 case exp_i: instrucțiune_i break;

 …………………………………..

 case exp_n: instrucțiune_n break;

 [default: instrucțiune_n+1]

}

Instrucțiunea se execută astfel:

Se evaluează expresie și apoi:

dacă rezultatul obținut este egal cu valoarea obținută în urma evaluării:

• exp_1, se execută instrucțiune_1, după care se trece la executarea instrucțiunii care urmează după

switch;

• exp_2, se execută instrucțiune_2, după care se trece la executarea instrucțiunii care urmează după

switch;

• exp_2, se execută instrucțiune_2, după care se trece la executarea instrucțiunii care urmează după

switch;

• ………………………………………………………………………………………………….

• exp_i, se execută instrucțiune_i, după care se trece la executarea instrucțiunii care urmează după switch;

• exp_n, se execută instrucțiune_n, după care se trece la executarea instrucțiunii care urmează după

switch;

altfel se execută instrucțiunea instrucțiune_n+1 după care se trece la executarea instrucțiunii care urmează după

switch.

Observații:

1. expresie trebuie să furnizeze un rezultat numeric întreg;

2. Rezultatele pentru fiecare caz în parte al exp_i trebuie să fie valori constante întregi;

3. Toate expresiile corespunzătoare cazurilor (exp_i) trebuie să fie diferite între ele;

4. Caracterul : este obligatoriu, fiind un separator între eticheta cazului respectiv (case exp_i) și

instrucțiunea care se va executa (instrucțiune_i);

5. Colecția de instrucțiuni etichetate trebuie să fie încapsulată într-un bloc delimitat de accolade;

6. Eticheta default este opțională. Instrucțiunea atașată instrucțiune_n+1 se execută numai dacă nu a fost

îndeplinit nici un caz anterior;

7. Instrucțiunea break; este obligatorie la fiecare caz în parte și are ca efect întreruperea execuției

instrucțiunii switch…case și trecerea la executarea următoarei instrucțiuni din program. Dacă ea lipsește,

atunci e verificat și următorul caz.

Structura repetitivă
Structura repetitive are rolul de a repeta execuția unei instrucțiuni sau a unui grup de instrucțiuni. Aceste structuri

au fost introduce în limbajele de programare cu scopul de a ușura munca programatorului ca să nu repete scrierea

în mod repetat a aceleiași instrucțiuni sau a unui grup de instrucțiuni în programul sursă. De cele mai multe ori,

nici nu e posibil să implementăm un algoritm scriind în mod repetat aceste instrucțiuni pentru că în majoritatea

cazurilor nu știm de căte ori ele trebuie repetate.

Structura repetitivă condiționată anterior

Instrucțiunea while
Sintaxa:

while (expresie)

 instrucțiune;

Instrucțiunea se execută astfel:

Se evaluează expresie și dacă rezultatul este diferit de zero (corespunzător valorii logice True), se execută

instrucțiune, apoi se evaluează din nou expresie și dacă rezultatul este diferit de zero se execută din nou

instrucțiune și așa mai departe (deci, se repetă execuția instrucțiunii instrucțiune atâta timp cât evaluarea

expresiei expresie furnizează uun rezultat diferit de zero). În momentul în care evaluarea expresie este zero

(corespunzător valorii False), se trece la execuția instrucțiunii care urmează instrucțiunii while.

Observații:

1. Structura while repetă o singură instrucțiune. Dacă este necesară repetarea unui grup de instrucțiuni,

atunci ele vor fi încapsulate într-o instrucțiune compusă.

2. while este o structură repetitivă cu un număr necunoscut de pași condiționată anterior.

3. Instrucțiunea care se repetă poate fi chiar și o instrucțiune vidă.

4. expresie poate fi formată și dintr-o expresie compusă din mai multe expresii legate cu operatorul virgulă

(vezi exemplele de mai jos).

5. E obligatoriu ca instrucțiune să modifice valorile unor anumite variabile care intervin în expresie, astfel

încât valoarea acesteia (după un număr finit de pași) să fie zero, făcând posibilă ieșirea din ciclu, altfel

am avea un ciclu infinit.

6. Deoarece mai întâi se evaluează expresie și numai dacă valoarea sa e diferită de zero, se execută

instrucțiune, spunem că structura while este o structură repetitivă condiționată anterior (evaluarea

expresiei se face anterior execuției instrucțiunii.

7. Întrucât evaluarea expresiei se face anterior execuției instrucțiunii, dacă rezultatul evaluării este zero chiar

de la început, atunci instrucțiune nu se va executa deloc.

8. instructiune poate fi orice instrucțiune recunoscută de C++, inclusiv instrucțiunea while. Când două sau

mai multe instrucțiuni while sunt incluse una în alta, se spune că avem instrucțiuni while imbricate.

Exemple:
#include <iostream>

using namespace std;

int main()

{ // Se citesc numere naturale pana apare 0 si se afiseaza suma celor pare

 unsigned long long int a,s=0;

 cin>>a;

 while(a) //Expresia a condenseaza expresia a!=0

 {

 if(!(a%2)) // Expresia !(a%2)condenseaza expresia a%2==0

 s+=a; //Expresia s+=a condenseaza expresia s=s+a

 cin>>a;

 }

 cout<<s;

 return 0;}

#include <iostream>

using namespace std;

int main()

{ // Se citeste un numar natural si se afiseaza suma cifrelor

 unsigned long long int n;

 unsigned s=0;

 cin>>n;

 while(s+=n%10,n/=10) // Expresie compusa

 ; // Se repeta instructiunea vida

 cout<<s;

 return 0;

}

Expresia compusă cu ajutorul operatorului virgulă din acest exemplu se evaluază astfel: mai întâi se

evaluează prima expresie (cu care se actualizează suma cifrelor s), apoi se evaluează a doua expresie cu care se

elimină ultima cifră din număr și rezultatul acestei expresii este memorat în variabila n (expresia fiind o atribuire).

Cum valoarea expresiei compuse din mai multe expresii legate cu operatorul virgule este dat de ultima expresie,

aici valoarea expresiei compuse este chiar valoarea lui n.

Instrucțiunea for
Sintaxa:

for (expresie_1;expresie_2;expresie_3)

 instrucțiune;

Instrucțiunea se execută astfel:

Mai întâi se evaluează expresie_1 o singură dată înainte de prima execuție a instrucțiunii și are rolul de inițializare.

Apoi se evaluează expresie_2 având rolul de testare, iar dacă rezultatul evaluării este diferit de zero

(corespunzător valorii True) se va executa instrucțiune. După aceea se evaluaează expresie_3 care are rolul de

modificare prin schimbarea stării curente, astfel încât să se avanseze spre starea finală.

În continuare se evaluează expresie_2 și dacă valoare ei e diferită de zero se execute din nou instrucțiune, după

care se evaluează expresie_3 pentru a modifica starea curentă și tot așa până când, în urma evaluării expresiei

expresie_2 se obține valoarea zero (corespunzător valorii False), moment în care se încheie execuția structurii for

și se trece la execuția instrucțiunii care urmează după ea.

Observații:

1. Oricare dintre cele trei expresii pot să lipsească (pot să lipsească chiar și toate), dar cei doi delimitatori ;

dintre cele trei expresii sunt obligatorii. Când o expresie lipsește putem considera că acolo figurează o

expresie vidă. Structura for(;;) are toate expresiile vide și ea execute un ciclu infinit. Un program care

conține un asemenea ciclu se numește program care ciclează la infinit. E de la sine înțeles că dacă

lipsește expresie_2 instrucțiunea va executa un ciclu infinit.

2. Instrucțiunea for este tot o instrucțiune condiționată anterior ca și while, deoarece mai intâi se evaluează

expresia (în cazul acesta expresie_2) și abia după aceea se execută sau nu instrucțiune.

3. În unele limbaje de programare instrucțiunea for este considerată o structură repetitivă cu un număr

cunoscut de pași, dar limbajul C++ e mult mai flexibil și ea poate fi utilizată și în situații în care numărul

de pași e necunoscut.

4. Deoarece mai întâi se evaluează expresie_2 și numai dacă valoarea sa e diferită de zero, se execută

instrucțiune, spunem că structura for este o structură repetitivă condiționată anterior (evaluarea

expresiei se face anterior execuției instrucțiunii.

5. Întrucât evaluarea expresiei se face anterior execuției instrucțiunii, dacă rezultatul evaluării este zero chiar

de la început, atunci instrucțiune nu se va executa deloc.

6. instructiune poate fi orice instrucțiune recunoscută de C++, inclusiv instrucțiunea for. Când două sau

mai multe instrucțiuni for sunt incluse una în alta, se spune că avem instrucțiuni for imbricate.

Exemple:

Structura repetitivă condiționată posterior

Instrucțiunea do…while
Sintaxa:

do

 instrucțiune;

while (expresie);

Instrucțiunea se execută astfel:

Se execută instrucțiune după care se evaluează expresie. Dacă rezultatul evaluării expresiei este diferit de zero

(corespunzător valorii True), se execută din nou instrucțiune, apoi se evaluează din nou expresie și tot așa până

când valoarea expresiei va fi zero (corespunzător valorii False), se trece la execuția instrucțiunii care urmează

instrucțiunii do...while.

Observații:

1. Structura do…while repetă o singură instrucțiune. Dacă este necesară repetarea unui grup de instrucțiuni,

atunci ele vor fi încapsulate într-o instrucțiune compusă.

2. Spre deosebire de while, structura do..while este o structură repetitivă cu un număr necunoscut de

pași condiționată posterior. Din acest motiv, instrucțiune se execută cel puțin odată, chiar dacă

expresie are de la început valoarea zero. Prin urmare, când utilizăm structura do...while trebuie să fim

foarte atenți deoarece putem să avem erori logice când implementăm un algoritm și utilizăm această

structură.

3. Instrucțiunea care se repetă poate să lipsească (se consideră că există acolo o instrucțiune vidă), dar

expresie nu poate să lipsească niciodată (absența ei generează o eroare de sintaxă).

4. expresie poate fi formată și dintr-o expresie compusă din mai multe expresii legate cu operatorul virgulă

(vezi exemplele de mai jos).

5. E obligatoriu ca instrucțiune să modifice valorile unor anumite variabile care intervin în expresie, astfel

încât valoarea acesteia (după un număr finit de pași) să fie zero, făcând posibilă ieșirea din ciclu, altfel

am avea un ciclu infinit.

6. instructiune poate fi orice instrucțiune recunoscută de C++, inclusiv instrucțiunea do...while. Când două

sau mai multe instrucțiuni do...while sunt incluse una în alta, se spune că avem instrucțiuni do...while

imbricate.

Exemple:

#include <iostream>

using namespace std;

int main()

{ // Program cu ciclu infinit. Iesire cu tastele Ctrl+Break

 do

 {

 }

 while(1);

 cout<<"DA";

 return 0;

}

