

1

LIMBAJUL PSEUDOCOD

Introducere
Pseudocod este un limbaj prin care sunt descriși pașii dintr-un algoritm. Limbajul pseudocod conține
structurile specifice unui limbaj de programare obișnuit (precum Pascal, C/C++, Basic, etc) dar este
destinat a fi citit de către oameni, nu de către calculatoare.
De obicei sunt omise detaliile vitale într-un limbaj de programare, precum declararea variabilelor sau
secvențe specifice limbajului. Algoritmii pseudocod pot conține secvențe descrise în limbaj natural,
precum și expresii matematice compacte, care lipsesc din limbajele de programare reale.
Conceptele care intervin in algoritmii pseudocod sunt similare cu cele din limbajele de programare:

• instrucțiuni
• variabile
• constante
• operații
• expresii

Există mai multe variante ale limbajului pseudocod. Acest articol se referă la varianta folosită în
subiectele pentru examenul de bacalaureat la informatică. Limba folosită este limba română.

Variabile și constante
În pseudocod variabilele nu se declară, iar numele lor respectă regula uzuală a identificatorilor – litere,
cifre, caracterul de subliniere și să nu înceapă cu cifră.
Constantele care apar de regulă în algoritmii pseudocod sunt constante literale (valori numerice,
întregi sau reale, caractere – delimitate prin apostrof ‘, șiruri de caractere – delimitate prin apostroafe

(‘) sau ghilimele (“). De asemenea, pot să apară constante matematice, de exemplu π.

Operații
Sunt prezente toate operațiile aritmetice uzuale:

• adunarea a două numere: a+b. În funcție de context, rezultatul este întreg sau real.

• scăderea a două numere: a-b. În funcție de context, rezultatul este întreg sau real.

• înmulțirea a două numere: a*b. În funcție de context, rezultatul este întreg sau real.

• împărțirea a două numere: a/b. Rezultatul se consideră real. Dacă se dorește determinarea

câtului împărțirii a două numere naturale, se va folosi partea întreagă a rezultatului
împărțirii: [a/b].

• restul împărțirii a două numere întregi: a%b. Se aplică numai pentru date întregi, iar rezultatul

este număr întreg.
Notă: Unele variante pseudocod propun operațiile DIV și MOD pentru determinarea câtului și restului

împărțirii a două numere întregi. De asemenea, pot să apară operații de ridicare la putere, în

forma anan, sau de extragere a rădăcinii pătrate – x−−√x.

Operațiile relaționale sunt:

• = – egalitatea

• ≠ – neegalitatea

• < – mai mic

• ≤ – mai mic sau egal

• > – mai mare

• ≥ – mai mare sau egal

2

Operanzii sunt de regulă numere, iar rezultatul este valoare de adevăr (adevărat sau fals).

Operațiile logice sunt NOT, ȘI, SAU – cu semnificațiile cunoscute. O descriere a operațiilor logice poate

fi găsită aici: www.pbinfo.ro/articole/21315/operatii-logice.

Instrucțiuni
Instrucțiunile sunt componentele algoritmului care au efect, atunci când se execută. Ele modifică
valorile unor variabile, citesc sau afișează date, repetă anumite acțiuni, etc.
De regulă fiecare instrucțiune se scrie pe o linie (sau mai multe în cazul celor complexe), dar există
situații când, pentru a economisi spațiu, două sau mai multe instrucțiuni simple se scriu pe același
rând, separate prin ;.
Orice algoritm poate fi reprezentat prin intermediul a trei tipuri de structuri:

• structura liniară
• structura alternativă
• structura repetitivă

o structura repetitivă cu număr necunoscut de pași
▪ structura repetitivă cu număr necunoscut de pași și test inițial
▪ structura repetitivă cu număr necunoscut de pași și test final

o structura repetitivă cu număr cunoscut de pași

Citirea
Pentru citirea datelor se folosește instrucțiunea citește <listă variabile>, unde <listă

variabile> reprezintă un șir de variabile separate prin caracterul ,. Se preiau valori succesive de la

tastatură și se memorează în variabilele din listă.
Exemplu

citeste a , b , c

Citirea datelor este frecvent însoțită de precizări privind datele citite (tip, valori posibile. etc.).

Afișarea
Pentru afișarea datelor se folosește instrucțiunea scrie <listă expresii>, unde <listă

expresii> reprezintă un șir de expresii separate prin caracterul ,. Se evaluează în ordine expresiile

din listă și se afisează pe ecran rezultatele lor.
Exemplu

scrie 'a + b = ' , a + b

Dacă a = 3 și b = 4 se va afișa:

a + b = 7

Atribuirea
Pentru atribuire se folosește instructiunea <variabilă> ← <expresie>. Se evaluază expresia, iar

valoarea obținută se memorează in variabilă.
Exemple

https://www.pbinfo.ro/articole/21315/operatii-logice

3

a ← 0
S ← a + b
i ← i + 1

Structura alternativă
În pseudocod există instrucțiunea daca, cu următoarea sintaxă:

┌ daca <conditie> atunci
│ <instructiuni1>
│ altfel
│ <instructiuni2>
└■

sau

┌ daca <conditie> atunci
│ <instructiuni1>
└■

Modul de execuție este următorul:

• se evaluează <conditie>

• dacă este adevărată, se executa grupul de instrucțiuni <instructiuni1>, apoi se trece la

următoarea instrucțiune
• dacă este falsă, se executa grupul de instrucțiuni <instructiuni2>, dacă există

secțiunea altfel, apoi se trece la următoarea instrucțiune.

Structuri repetive

Structura repetitivă cu număr cunoscut de pași

Instrucțiunea PENTRU

Sintaxă

┌ pentru <variabila> ← <expresie initiala>, <expresie finala> , <pas> executa
│ <instructiuni>
└■

unde expresie initiala, expresie finala și pas sunt expresii cu rezultat (de regulă) întreg,

iar pas poate fi 1 sau -1 și poate lipsi, caz în care se consideră că este 1.

variabila primește pe rând valori crescătoare (dacă pas = 1) sau descrescătoare (dacă pas = -

1) începând de la expresie initiala până la expresie finala, și pentru fiecare valoare se

execută secvența instructiuni.

Dacă pas = 1 și expresie initiala > expresie finala>, secvența instructiuni nu se va

executa deloc. La fel se întâmplă când <pas = -1 și expresie initiala < expresie finala. În

caz contrar numărul de pași este expresie initială - expresie finala + 1, dacă <pas = 1,

respectiv expresie finală - expresie initiala + 1, dacă pas=-1.

Exemplu
Determinarea sumei și produsului primelor n numere naturale:

S ← 0; P ← 1
┌ pentru i←1,n executa
│ S ← S + i
│ P ← P * i
└■
scrie S, ' ' , P

4

Structura repetitivă cu număr necunoscut de pasi și test inițial

Instrucțiunea CÂT TIMP … EXECUTĂ

Sintaxă

┌ cat timp <conditie> executa
│ <instructiuni>
└■

Mod de execuție

1. se evalueză condiția
2. dacă este adevărată se executa instrucțiunile și se revine la pasul 1
3. dacă este falsă se trece la următoarea instrucțiune din algoritm

Important: Dacă condiția este de la început falsă, instrucțiunile nu se vor executa deloc!
Exemplu
Determinarea sumei cifrelor unui număr natural:

citeste n
S ← 0
┌ cat timp n ≠ 0 executa
│ S ← S + n % 10
│ n ← [n/10]
└■
scrie S

Structura repetitivă cu număr necunoscut de pasi și test final

Instrucțiunea EXECUTA … CAT TIMP
Sintaxă

┌ executa
│ <instructiuni>
└ cat timp <conditie>

Mod de execuție

1. se executa instrucțiunile
2. se evalueză condiția
3. dacă este adevărată se revine la pasul

1
4. dacă este falsă se trece la următoarea

instrucțiune din algoritm
Important: Chiar dacă condiția este de la
început falsă, instrucțiunile s-au executat deja
o dată!
Exemplu
Numărul cifrelor unui număr natural:

citeste n
cnt ← 0
┌ executa
│ cnt ← cnt + 1
│ n ← [n/10]
└ cat timp n ≠ 0
scrie cnt

Instrucțiunea REPETA … PANA CAND
Sintaxă

┌ repeta
│ <instructiuni>
└ pana cand <conditie>

Mod de execuție

1. se executa instrucțiunile
2. se evalueză condiția
3. dacă este falsă se revine la pasul 1
4. dacă este adevărată se trece la

următoarea instrucțiune din algoritm
Important: Chiar dacă condiția este de la
început adevărată, instrucțiunile s-au executat
deja o dată!
Exemplu
Numărul cifrelor unui număr natural:

citeste n
cnt ← 0
┌ repeta
│ cnt ← cnt + 1
│ n ← [n/10]
└ pana cand n = 0
scrie cnt

5

Echivalența structurilor repetitive
Numeroase exerciții propun un algoritm și se cere scrierea unui algoritm echivalent care să folosească
o structură repetitivă de alt tip. Doi algoritmi sunt echivalenți dacă pentru orice set de date de intrare
(conforme cu restricțiile problemei) ei obțin aceleași rezultate.
Această secțiune descrie câteva reguli de transformare a structurilor repetitive din algoritmii
pseudocod.

