LIMBAJUL PSEUDOCOD

Introducere

Pseudocod este un limbaj prin care sunt descrisi pasii dintr-un algoritm. Limbajul pseudocod contine
structurile specifice unui limbaj de programare obisnuit (precum Pascal, C/C++, Basic, etc) dar este
destinat a fi citit de catre oameni, nu de catre calculatoare.

De obicei sunt omise detaliile vitale ntr-un limbaj de programare, precum declararea variabilelor sau
secvente specifice limbajului. Algoritmii pseudocod pot contine secvente descrise in limbaj natural,
precum si expresii matematice compacte, care lipsesc din limbajele de programare reale.
Conceptele care intervin in algoritmii pseudocod sunt similare cu cele din limbajele de programare:

e instructiuni

e variabile
e constante
e operatii

e expresii

Existda mai multe variante ale limbajului pseudocod. Acest articol se refera la varianta folosita in
subiectele pentru examenul de bacalaureat la informatica. Limba folosita este limba romana.

Variabile si constante

In pseudocod variabilele nu se declara, iar numele lor respecta regula uzuala a identificatorilor — litere,
cifre, caracterul de subliniere si sa nu inceapa cu cifra.

Constantele care apar de regula in algoritmii pseudocod sunt constante literale (valori numerice,
intregi sau reale, caractere — delimitate prin apostrof [, siruri de caractere — delimitate prin apostroafe

(I) sau ghilimele (E). De asemenea, pot sa apara constante matematice, de exemplu Tt.

Operatii

Sunt prezente toate operatiile aritmetice uzuale:

« adunarea a doua numere: a+b. in functie de context, rezultatul este intreg sau real.
« scaderea a doua numere: a-b. In functie de context, rezultatul este intreg sau real.
« Tnmultirea a doud numere: a+b. In functie de context, rezultatul este intreg sau real.
» Timpartirea a doua numere: a/b. Rezultatul se considera real. Daca se doreste determinarea
catului impartirii a doua numere naturale, se va folosi partea intreaga a rezultatului
impartirii: [a/b].
o restul impartirii a doua numere intregi: asb. Se aplicd numai pentru date intregi, iar rezultatul
este numar intreg.
Nota: Unele variante pseudocod propun operatiile D1V si MOD pentru determinarea catului si restului
impartirii a doua numere intregi. De asemenea, pot sa apara operatii de ridicare la putere, in

forma anan, sau de extragere a radacinii patrate — x——Vx.
Operatiile relationale sunt:

e ——egalitatea

e #—neegalitatea

e < —maimic

e < —mai mic sau egal

e > —mai mare

e >—mai mare sau egal

Operanzii sunt de regula numere, iar rezultatul este valoare de adevar (adevarat sau fals).
Operatiile logice sunt NOT, s, SAU — cu semnificatiile cunoscute. O descriere a operatiilor logice poate
fi gasita aici: www.pbinfo.ro/articole/21315/operatii-logice.

Instructiuni

Instructiunile sunt componentele algoritmului care au efect, atunci cand se executa. Ele modifica
valorile unor variabile, citesc sau afiseaza date, repeta anumite actiuni, etc.

De regula fiecare instructiune se scrie pe o linie (sau mai multe in cazul celor complexe), dar exista
situatii cand, pentru a economisi spatiu, doua sau mai multe instructiuni simple se scriu pe acelasi
rand, separate prin jj.

Orice algoritm poate fi reprezentat prin intermediul a trei tipuri de structuri:

e structura liniara
e structura alternativa
e structura repetitiva
o structura repetitiva cu numar necunoscut de pasi
= structura repetitiva cu numar necunoscut de pasi si test initial
= structura repetitiva cu numar necunoscut de pasi si test final
o structura repetitiva cu numar cunoscut de pasi

Citirea

Pentru citirea datelor se foloseste instructiunea citeste <listd variabile>, unde <listd
variabile> reprezinta un sir de variabile separate prin caracterul . Se preiau valori succesive de la
tastatura si se memoreaza in variabilele din lista.

Exemplu

citestea , b, c

Citirea datelor este frecvent insotita de precizari privind datele citite (tip, valori posibile. etc.).

Afisarea

Pentru afisarea datelor se foloseste instructiunea scrie <listd expresii>, unde <listd&
expresii> reprezinta un sir de expresii separate prin caracterul ! Se evalueaza in ordine expresiile
din lista si se afiseaza pe ecran rezultatele lor.

Exemplu

scrie 'a + b = ,a+b

Dacaa = 3sib = 4 seva afisa:

a+b=7

Atribuirea

Pentru atribuire se foloseste instructiunea <variabild> ~ <expresie>. Se evaluaza expresia, iar
valoarea obtinuta se memoreaza in variabila.
Exemple

https://www.pbinfo.ro/articole/21315/operatii-logice

a « o0
S«<a+b
i«i+1

Structura alternativa

In pseudocod existd instructiunea daca, cu urméatoarea sintaxa:

r daca <conditie> atunci
<instructiunil>
altfel
<instructiuni2>

sau

daca <conditie> atunci
[. <instructiunil>

Modul de executie este urmatorul:

e seevalueaza <conditie>

o daca este adevarata, se executa grupul de instructiuni <instructiunil>, apoi se trece la
urmatoarea instructiune

o daca este falsa, se executa grupul de instructiuni <instructiuni2>, daca exista
sectiunea altfel, apoi se trece la urmatoarea instructiune.

Structuri repetive

Structura repetitiva cu numar cunoscut de pasi

Instructiunea PENTRU
Sintaxa

pentru <variabila> <« <expresie initiala>, <expresie finala> , <pas> executa
[. <instructiuni>

unde expresie initiala, expresie finala Sipas sunt expresii cu rezultat (de regula) intreg,
lar pas poate fi 1 sau -1 si poate lipsi, caz in care se considera ca este 1.

variabila primeste pe rand valori crescatoare (daca pas = 1) sau descrescatoare (dacéd pas = -
1) incepand de la expresie initiala pana la expresie finala, Si pentru fiecare valoare se
executa secventa instructiuni.

Daca pas = 1 Siexpresie initiala > expresie finala>, secventa instructiuni nu se va
executa deloc. La fel se intampla cand <pas = -1 Siexpresie initiala < expresie finala.In
caz contrar numarul de pasi este expresie initiald - expresie finala + 1, daca <pas = 1,
respectiv expresie finald - expresie initiala + 1, daca pas=-1

Exemplu

Determinarea sumei si produsului primelor n numere naturale:

S«0; Pel
pentru i«l,n executa

S«S +1
Pe«P *i
'm
scrie S, " ' , P

Instructiunea CAT TIMP ... EXECUTA

Sintaxa
cat timp <conditie> executa
L <instructiuni>

Mod de executie

1. se evalueza conditia

Structura repetitiva cu numar necunoscut de pasi si test initial

2. daca este adevarata se executa instructiunile si se revine la pasul 1
3. daca este falsa se trece la urmatoarea instructiune din algoritm
Important: Daca conditia este de la inceput falsa, instructiunile nu se vor executa deloc!

Exemplu

Determinarea sumei cifrelor unui numar natural:

citeste n

S« 0

r cat timp n # 0 executa
S«<S+n%10
n « [n/10]

scrie S

Structura repetitiva cu numar necunoscut de pasi si test final

Instructiunea EXECUTA ... CAT TIMP
Sintaxa

r executa
<instructiuni>
L cat timp <conditie>

Mod de executie

1. se executa instructiunile
2. se evalueza conditia
3. daca este adevarata se revine la pasul
1
4. daca este falsa se trece la urmatoarea
instructiune din algoritm
Important: Chiar daca conditia este de la
inceput falsa, instructiunile s-au executat deja
o data!
Exemplu
Numarul cifrelor unui numar natural:

citeste n
cnt « 0
r executa
cnt « cnt + 1
n « [n/10]
cat timp n # ©
scrie cnt

Instructiunea REPETA ... PANA CAND
Sintaxa

r repeta
<instructiuni>
L pana cand <conditie>

Mod de executie

se executa instructiunile

se evalueza conditia

daca este falsa se revine la pasul 1
daca este adevarata se trece la
urmatoarea instructiune din algoritm
Important: Chiar daca conditia este de la
inceput adevarata, instructiunile s-au executat
deja o data!

Exemplu

Numarul cifrelor unui numar natural:

NS

citeste n
cnt « 0
r repeta
cnt « ent + 1
n « [n/10]
pana cand n = ©
scrie cnt

Echivalenta structurilor repetitive

Numeroase exercitii propun un algoritm si se cere scrierea unui algoritm echivalent care sa foloseasca
o structura repetitiva de alt tip. Doi algoritmi sunt echivalenti daca pentru orice set de date de intrare
(conforme cu restrictiile problemei) ei obtin aceleasi rezultate.

Aceasta sectiune descrie cateva reguli de transformare a structurilor repetitive din algoritmii

pseudocod.
PENTRU — CATTIMP

r pentru i<a,b executa
\ <instructiuni>

lm

PENTRU — EXECUTA ... CATTIMP

r pentru i<a,b executa
‘ <instructiuni>

lm

PENTRU — REPETA ... PANACAND

r pentru i<a,b executa
‘ <instructiuni>

=

« a

=

cattimp i £ b executa
<instructiuni>

iei+l

i ——

<instructiuni>

iei+t

i+a

r daca i £ b atunci

repeta
<instructiuni>
i«i+ 1

(
|
L panacand i » b

=

CATTIMP — EXECUTA ... CATTIMP

r cattimp <conditie> executa
‘ <instructiuni>

r daca <conditie> atunci

|F executa
lm |‘ <instructiuni>
|L cattimp <conditiex
o
REPETA ... PANACAND — CATTIMP
r repeta <instructiuni>

<instructiuni>
L panacand <conditie>

r cattimp NOT <conditie> executa

<instructiunis>

=

