xe[m,p] U [q,n]
=
x>=m && x<=p | | x>=q && x<=n

NT/ 7
| /4
q n
S1.2
C

Afiseaza :
2050 205 205 202 2 0 20 2050

F(O)n=0 *——_ | CoutO

If (2%10!=0) cout<<2,

F(2) n=2 (M\m
\)

F(20) n=20 Cout 20
M10!=0) nu

~Hse f(2)..... cout <<20
F(205) n=205 Cout 20\05\“

If (205%10!=0) da cout 205,(20)
F(2050) n=20§)\ Cout 2050

Wf\%s\;)%mhomu

Else f{205) cout<<2050

Se executa primul apel f(2050)si urmarim sagetile

dupa unele apeluri urmarind sagetile

> apoi revenim la instructiunile aflate

SIL.3|SPAC Solutiile reprezinta permutari de n elemente, la care
a 1234 adaugam si conditia atribut langa subiect (acceptam
solutiile doar cu 13 sau 31)
12341243, 1324, 1342, 34231432, 2134, 2343, 2314,
234%.......
Ultimele solutii sunt:
4123, 4132, 4213, 4231, 4312, 4321
4312 este CASP (complement, atribut, subiect, predicat)
S1.4 | M[16][16]
b
S 1.5 | Un graf cu 7 noduri si 21 muchii | Pentru a elimina nr minim de muchii, Tn graful partial cu
C este graf complet (un graf cele 2 componente conexe, trebuie ca fiecare
complet cu 7 noduri are 7*6/2 componenta conexa sa fie fiecare graf complet.
muchii=21) Putem construi urmatoarele variante:

1.

SAU
2. Prima componenta conexa cu 3 noduri, a doua cu
4 noduri= Vom avea nr muchii = 3*2/2+4*3/2=9
muchii = vom elimina 12 muchii

citeste m,n M=75, n=90
rpentru i<-n,m,-1 =90, 75,-1 =89 =88 =87 =86 =85 1=84 =83
executd =90 X=89 X=88 X=87 X=86 X=85 X=84 X=83
| x&i X=90 C=9 C=8 c=7 C=6 C=5 C=4 C=3
| c€x%10 Cc=0 Repeta Repeta Repeta Repeta Repeta Repeta Repeta
| rrepeta Repeta X=8 X=8 X=8 X=8 X=8 X=8 X=8
| | x€[x/10] X=9 Panacand | Panacand 8!=8 | Pana cand 8!=7 | Pana cand Pana cand 8!=5 | Panacand | Pana cand
| Lpana cand Pana cand 81=9 nu Da 81=6 Da 81=4 8!=3
x%10%c 91=0 Da Repeta Daca x=0 NU Da Daca x=0 NU Da Da
| rdacd x=0 atunci | Da Daca x=0 X=0 Daca x=0 NU Daca x=0 | Daca x=0
| | scriei," Daca x=0 NU | NU Pana cand 0!=8 NU NU
| Lm da
lm Daca x=0 da
scrie 88
=82 =81 =80 =79 =78 =77 =76 =75
X=82 X=81 X=80 X=79 X=78 X=77 X=76 X=75
C=2 C=1 C=0 C=9 C=8 C=7 C=9 C=5
Repeta Repeta Repeta Repeta Repeta Repeta Repeta Repeta
X=8 X=8 X=8 X=7 X=7 X=7 X=7 X=7
Pana cand Pana cand | Panacand 8!=0 | Panacand 7!=9 | Pana cand Pana cand 7!=7 | Pana cand | Pana cand
81=2 8!=1 Da Da 7!=8 NU 7!=6 7!=5
Da Da Daca x=0 NU Daca x=0 NU Da Repeta Da Da
Daca x=0 NU | Daca x=0 Dacax=0NU | X=0 Daca x=0 | Daca x=0
NU Panacand0!=7 | NU NU
da
Daca x=0 da
scrie 77
Daca x=0 NU

I1.1.b) Un numar x se afiseaza daca are toate cifrele egale, n€[2222,3332]
1.1.c)

#include <iostream>

using namespace std;

int main()
{
int m,n,c,x,i;
cin>>m>>n;
for (i=n;i>=m;i--)
{
X=i;
c=x%10;
do
{
x=x/10;
}while (x%10==c);
if (x==0)cout<<i<<" ";
}

return 0;

}

1.1.d

citeste m,n

i<n

rcat timp i>=m executa
| x&i

| c&x%10

| rrepeta

| | x€[x/10]

| Lpana cand x%10%c
| rdaca x=0 atunci

| | scriei,"

| tu

| i<i-1;

lm

1.2 l
T130252515 _
i 12345678 /\L)

A
Pot fi alese nodurile: 3,1, sau 7 ,-:L
3

if (d.B.x-d.A.x==d.A.y-d.B.y) cout<<”DA”;
else cout<<”NU”;

1.1
long diviz(long n)
{
long x,d,p;
x=n; d=2;
while (n!=1)// vom descompune numarul in factori primi
{
p=0;//puterea factorului curent d este 0
while (n%d==0) //impartim la d cat timp este posibil
{
p++; //puterea factorului curent creste
n=n/d;
}
if (p%2!=0) x=x/d;
//de fiecare data cand gasim o putere impara, eliminam un factor d din numarul calculat x
d++;
}
return x;
}
1.2
#include <iostream>
#include <cstring>
using namespace std;

int main()
{// vom construi sirul nou (initial vid) astfel: addugam separat primul cuvant apoi in mod repetat
adaugam ” —” si un nou cuvant extras din sirul dat.

char s[101], nou[101]="",*p;
cin.getline(s,101); //citim textul de la tastatura
p=strtok(s," "); //extragem primul cuvant p
strcat(nou,p); //lipim primul cuvant p la sirul construit
p=strtok(NULL, " "); //extragem urmatorul cuvant p
while (p) //cat timp exista cuvant
{
strcat(nou," - ");//lipim la sirul construit spatiu, liniuta si spatiu
strcat(nou,p);// lipim la sirul construit noul cuvant extras, p
4

p=strtok(NULL, " "); //extragem urmatorul cuvant p

}

strcpy(s,nou);//modificam sirul s in memorie, astfel incat acesta sa contina sirul nou construit
cout<<s;//afisam s

return O;

.3

#include <iostream>

#include <fstream>

using namespace std;

ifstream f("bac.txt");

long fr[101],x,y,z,maxi=0;

int main()

{

//vom construi un vector de frecventa pentru fiecare numar care poate reprezenta ipotenuza unui
triunghi dreptunghic

//ipotenuza cu cele mai multe aparitii va fi numarul cerut

while (f>>x>>y>>z) //cat timp putem citi un triplet de numere xy z
{//verificam daca numarul x, y sau z poate reprezenta ipotenuza unui triunghi dreptunghic, iar in
caz afirmativ vom creste frecventa aparitiilor ipotenuzei
if (x*x==y*y+z*z) fr[x]++;
else
if (y*¥y==x*x+z*z) fr[y]++;
else
if (z*¥z==y*y+x*x) frlz]++;
}
//calculam maximul frecventei ipotenuzelor gasite in fisier, din vectorul de frecventa
for (x=1;x<=100;x++)
if (fr[x]>maxi) maxi=fr[x];
cout<<maxi;
return O;
}
Algoritmul este eficient din punct de vedere al timpului de executare deoarece este liniar. Citim
tripletele din fisier x,y,z si daca ele pot forma un triunghi dreptunghic atunci construim frecventa
ipotenuzei:
if (x*x==y*y+z*z) fr[x]++;
else
if (y*y==x*x+z*z) fr[y]++;
else
if (z¥z==y*y+x*x) fr[z]++;
Frecventa maxima a ipotenuzei va reprezenta numarul cerut, care va fi afisat apoi pe ecran.

